7 research outputs found
Chronological evaluation of the synthesis techniques of nanocrystalline Fe73.5Cu1Nb3Si13.5B9 soft magnetic alloy
In this review article, we focus on the synthesis process and properties of Fe-Si-B-based soft magnetic alloys that exhibit superior magnetic properties. The process parameters related to the synthesis and characterization of these types of alloys are studied widely and investigated the properties observed in nanocrystalline Cu and Nb-dopped Fe-Si-B-based magnetic alloys. The properties of these materials are an exceptional combination of high permeability, high Curie temperature, low core losses and anisotropy energy, and near zero effective magnetostriction suitable for various applications such as magnetic field sensors, sensors for non-destructive evaluation of materials, motors, transformer cores, electric vehicles, etc. A significant number of research works have been conducted so far and more research is continued to improve their properties in various ways including engineering of materials composition, optimization of synthesis processes, and parameters for easy integration into modern devices. This review article aims to demonstrate a comparison study of the properties of Fe-Si-B- based soft magnetic alloys and to provide the latest updates on their developments toward tailoring the extrinsic (coercivity, and permeability) and intrinsic (Curie temperature and saturation magnetization) properties for conquering the subsequent area of applications. © 2023 Elsevier Lt
The fresnel interferometric imager
The Fresnel Interferometric Imager has been proposed to the European Space Agency (ESA) Cosmic Vision plan as a class L mission. This mission addresses several themes of the CV Plan: Exoplanet study, Matter in extreme conditions, and The Universe taking shape. This paper is an abridged version of the original ESA proposal. We have removed most of the technical and financial issues, to concentrate on the instrumental design and astrophysical missions. The instrument proposed is an ultra-lightweight telescope, featuring a novel optical concept based on diffraction focussing. It yields high dynamic range images, while releasing constraints on positioning and manufacturing of the main optical elements. This concept should open the way to very large apertures in space. In this two spacecraft formation-flying instrument, one spacecraft holds the focussing element: the Fresnel interferometric array; the other spacecraft holds the field optics, focal instrumentation, and detectors. The Fresnel array proposed here is a 3.6 x3.6 m square opaque foil punched with 10(5) to 10(6) void "subapertures". Focusing is achieved with no other optical element: the shape and positioning of the subapertures (holes in the foil) is responsible for beam combining by diffraction, and 5% to 10% of the total incident light ends up into a sharp focus. The consequence of this high number of subapertures is high dynamic range images. In addition, as it uses only a combination of vacuum and opaque material, this focussing method is potentially efficient over a very broad wavelength domain. The focal length of such diffractive focussing devices is wavelength dependent. However, this can be corrected. We have tested optically the efficiency of the chromatism correction on artificial sources (500 < lambda < 750 nm): the images are diffraction limited, and the dynamic range measured on an artificial double source reaches 6.2 10 (-aEuro parts per thousand 6). We have also validated numerical simulation algorithms for larger Fresnel interferometric arrays. These simulations yield a dynamic range (rejection factor) close to 10 (-aEuro parts per thousand 8) for arrays such as the 3.6 m one we propose. A dynamic range of 10 (-aEuro parts per thousand 8) allows detection of objects at contrasts as high as than 10 (-aEuro parts per thousand 9) in most of the field. The astrophysical applications cover many objects in the IR, visible an UV domains. Examples are presented, taking advantage of the high angular resolution and dynamic range capabilities of this concept