22 research outputs found
The tumor suppressor gene TRC8/RNF139 is disrupted by a constitutional balanced translocation t(8;22)(q24.13;q11.21) in a young girl with dysgerminoma
<p>Abstract</p> <p>Background</p> <p><it>RNF139/TRC8 </it>is a potential tumor suppressor gene with similarity to PTCH, a tumor suppressor implicated in basal cell carcinomas and glioblastomas. <it>TRC8 </it>has the potential to act in a novel regulatory relationship linking the cholesterol/lipid biosynthetic pathway with cellular growth control and has been identified in families with hereditary renal (RCC) and thyroid cancers. Haploinsufficiency of <it>TRC8 </it>may facilitate development of clear cell-RCC in association with <it>VHL </it>mutations, and may increase risk for other tumor types. We report a paternally inherited balanced translocation t(8;22) in a proposita with dysgerminoma.</p> <p>Methods</p> <p>The translocation was characterized by FISH and the breakpoints cloned, sequenced, and compared. DNA isolated from normal and tumor cells was checked for abnormalities by array-CGH. Expression of genes <it>TRC8 </it>and <it>TSN </it>was tested both on dysgerminoma and in the proposita and her father.</p> <p>Results</p> <p>The breakpoints of the translocation are located within the LCR-B low copy repeat on chromosome 22q11.21, containing the palindromic AT-rich repeat (PATRR) involved in recurrent and non-recurrent translocations, and in an AT-rich sequence inside intron 1 of the TRC8 tumor-suppressor gene at 8q24.13. <it>TRC8 </it>was strongly underexpressed in the dysgerminoma. Translin is underexpressed in the dysgerminoma compared to normal ovary.</p> <p><it>TRC8 </it>is a target of Translin (TSN), a posttranscriptional regulator of genes transcribed by the transcription factor CREM-tau in postmeiotic male germ cells.</p> <p>Conclusion</p> <p>A role for <it>TRC8 </it>in dysgerminoma may relate to its interaction with Translin. We propose a model in which one copy of <it>TRC8 </it>is disrupted by a palindrome-mediated translocation followed by complete loss of expression through suppression, possibly mediated by miRNA.</p
Adjuvant capecitabine in triple negative breast cancer patients with residual disease after neoadjuvant treatment: real-world evidence from CaRe, a multicentric, observational study
Background: In triple negative breast cancer patients treated with neoadjuvant chemotherapy, residual disease at surgery is the most relevant unfavorable prognostic factor. Current guidelines consider the use of adjuvant capecitabine, based on the results of the randomized CREATE-X study, carried out in Asian patients and including a small subset of triple negative tumors. Thus far, evidence on Caucasian patients is limited, and no real-world data are available. Methods: We carried out a multicenter, observational study, involving 44 oncologic centres. Triple negative breast cancer patients with residual disease, treated with adjuvant capecitabine from January 2017 through June 2021, were recruited. We primarily focused on treatment tolerability, with toxicity being reported as potential cause of treatment discontinuation. Secondarily, we assessed effectiveness in the overall study population and in a subset having a minimum follow-up of 2 years. Results: Overall, 270 patients were retrospectively identified. The 50.4% of the patients had residual node positive disease, 7.8% and 81.9% had large or G3 residual tumor, respectively, and 80.4% a Ki-67 >20%. Toxicity-related treatment discontinuation was observed only in 10.4% of the patients. In the whole population, at a median follow-up of 15 months, 2-year disease-free survival was 62%, 2 and 3-year overall survival 84.0% and 76.2%, respectively. In 129 patients with a median follow-up of 25 months, 2-year disease-free survival was 43.4%, 2 and 3-year overall survival 78.0% and 70.8%, respectively. Six or more cycles of capecitabine were associated with more favourable outcomes compared with less than six cycles. Conclusion: The CaRe study shows an unexpectedly good tolerance of adjuvant capecitabine in a real-world setting, although effectiveness appears to be lower than that observed in the CREATE-X study. Methodological differences between the two studies impose significant limits to comparability concerning effectiveness, and strongly invite further research
'Distal 16p12.2 microdeletion' in a patient with autosomal recessive deafness-22
The 16p12.2 chromosome band contains three large segmental duplications: BP1, BP2 and BP3, providing a substrate for recombination and recurrent chromosomal rearrangements. The â16p12.2 microdeletionâ is a recurrent deletion comprised between BP2 and BP3, associated with variable clinical findings. We identified a heterozygous 16p12.2 microdeletion spanning between BP1 and BP2 in a child evaluated for short stature and mild dyslexia. Unexpectedly, the mother carried the same deletion in the homozygous state and suffered from severe hearing loss. Detailed family history revealed consanguinity of the maternal grandparents. The 16p12.2 microdeletion is a rare condition and contains only three genes: METTL9, IGSF6 and OTOA of which the OTOA is considered responsible for DFNB22 hearing loss (MIM: 607039) under its homozygous condition. A number of OTOA mutations have been described, whereas very few cases of a 16p12.2 microdeletion similar to that observed in our family have been reported. In conclusion, we describe a rare âdistal 16p12.2 microdeletionâ widening the phenotypic spectrum associated with the recurrent 16p12.2 microdeletion and support the causative role of OTOA microdeletion in hearing impairment
Clinical and Molecular Characterization of Two Patients with CNTN6 Copy Number Variations
Submicroscopic chromosomal alterations usually involve different protein-coding genes and regulatory elements that are responsible for rare contiguous gene disorders, which complicate the understanding of genotype-phenotype correlations. Chromosome band 3p26.3 contains 3 genes encoding neuronal cell adhesion molecules: CHL1, CNTN6, and CNTN4. We describe 2 boys aged 8 years and 11 years mainly affected by intellectual disability and autism spectrum disorder, who harbor a paternally inherited 3p26.3 microdeletion and a 3p26.3 microduplication, respectively. Both anomalies involved only the CNTN6 gene, which encodes contactin 6, a member of the contactin family (MIM 607220). Contactins show pronounced brain expression and function. Interestingly, phenotypes in reciprocal microdeletions and microduplications of CNTN6 are very similar. In conclusion, our data, added to those reported in the literature, are particularly significant for understanding the pathogenic effect of single gene dosage alterations. As for other recurrent syndromes with variable phenotype, these findings are challenging in genetic counselling because of an evident variable penetrance
1p31.1 microdeletion including only NEGR1 gene in two patients.
Neuronal growth regulator 1 (NEGR1), a member of the immunoglobulin superfamily cell adhesion molecule subgroup IgLON, has been involved in neuronal growth and connectivity. Genetic variants, in or near the NEGR1 locus, have been associated with obesity and, more recently, with learning difficulties, intellectual disability, and psychiatric disorders. Here, we described the only second report of NEGR1 gene disruption in 1p31.1 microdeletion in two patients. Patient 1 is a 14-year-old female with neurological and psychiatric features present also in her family. Patient 2 is a 5-month-old infant showing global hypotonia as unique neurological features till now. This patient also carries 7p22.1 duplication, of paternal origin, that could be responsible for some malformations present in the child. We hypothesize a role of NEGR1 in producing the phenotype of our patients and compare them with other cases previously reported in the literature and DECIPHER database to better identify a possible genotype-phenotype correlation
Hypogonadotropic hypogonadism in a trisomy X carrier: phenotype description and genotype correlation
Hypogonadotropic hypogonadism in a trisomy X carrier: phenotype description and genotype correlation
Predictive Factors of Lapatinib and Capecitabine Activity in Patients with HER2-Positive, Trastuzumab-Resistant Metastatic Breast Cancer: Results from the Italian Retrospective Multicenter HERLAPAC Study.
BACKGROUND:There are no validated predictive markers for lapatinib and capecitabine in patients with trastuzumab-resistant HER2 positive metastatic breast cancer. METHODS:Data of 148 consecutive patients treated with lapatinib and capecitabine from March 2007 to December 2013 were collected from 13 Italian institutions. Estimates of progression-free survival (PFS) and overall survival (OS) were obtained with the Kaplan-Meier method and compared with logrank test. The association of clinicopathological variables and the outcome was studied by binary logistic regression analysis and Cox proportional hazard analysis. RESULTS:At a median follow-up of 41 months, median PFS and OS were 7 and 21 months, respectively. Patents with a PFS longer than 7 months had a significantly longer OS, compared with patients with a PFS equal to or shorter than 7 months (36 vs 15 months; p<0.001). Multivariate analysis revealed the benefit of lapatinib-based therapy in terms of PFS and OS was significantly associated with time-to-progression (TTP) on prior first-line trastuzumab-based therapy. In particular, each additional month on first-line trastuzumab based therapy was associated with a reduction in hazard of progression and death after the initiation of lapatinib-based therapy of 2% and 4%, respectively. CONCLUSIONS:A longer TTP to first line trastuzumab seems to predict a prolonged PFS and OS with subsequent lapatinib and capecitabine