25 research outputs found

    Use of information technology in healthcare sector for improving outcomes

    Get PDF
    With revolutionary success of internet and mobile usage in India, use of information technology for healthcare promotion by pharmaceutical industry and other healthcare sectors is increasing. Information technology provides an unlimited opportunity for promoting correct healthcare practices for prevention of certain diseases, providing information for maintaining health and other suitable information to the expected target audience. Information technology provides numerous advantages including extended reach, quick dissemination of facts, providing unlimited amount of information and also eliminates the need of large number of manual resources. There is enormous potential for improving the awareness about healthcare through digital media and information technology. However, with its increasing usage, there are some challenges, responsibilities and precautions which need to be considered while using information technology as a resource for healthcare promotion. This article discusses the use of information technology in healthcare promotion along with the challenges in its usage

    Local Industrialization Based Lucrative Farming Using Machine Learning Technique

    Get PDF
    In recent times, agriculture have gained lot of attention of researchers. More precisely, crop prediction is trending topic for research as it leads agri-business to success or failure. Crop prediction totally rest on climatic and chemical changes. In the past which crop to promote was elected by rancher. All the decisions related to its cultivation, fertilizing, harvesting and farm maintenance was taken by rancher himself with his experience. But as we can see because of constant fluctuations in atmospheric conditions coming to any conclusion have become very tough. Picking correct crop to grow at right times under right circumstances can help rancher to make more business. To achieve what we cannot do manually we have started building machine learning models for it nowadays. To predict the crop deciding which parameters to consider and whose impact will be more on final decision is also equally important. For this we use feature selection models. This will alter the underdone data into more precise one. Though there have been various techniques to resolve this problem better performance is still desirable. In this research we have provided more precise & optimum solution for crop prediction keeping Satara, Sangli, Kolhapur region of Maharashtra. Along with crop & composts to increase harvest we are offering industrialization around so rancher can trade the yield & earn more profit. The proposed solution is using machine learning algorithms like KNN, Random Forest, Naïve Bayes where Random Forest outperforms others so we are using it to build our final framework to predict crop

    Synthesis of Gold Nanoanisotrops Using Dioscorea bulbifera

    Get PDF
    Biosynthesis of metal nanoparticles employing plant extracts and thereby development of an environmentally benign process is an important branch of nanotechnology. Here, the synthesis of gold nanoparticles using Dioscorea bulbifera tuber extract (DBTE) as the reducing agent is reported. Field emission scanning electron microscopy (FESEM), energy-dispersive spectroscopy (EDX), X-ray diffraction (XRD), and UV-visible absorption spectroscopy confirmed the reduction of gold ions to AuNPs. The anisotropic nanoparticles consist of a mixture of gold nanotriangles, nanoprisms, nanotrapezoid, and spheres. The kinetics of particle formation was time dependent and was enhanced by the increase of temperature from 6°C to 50°C, the optimum being 50°C. The optimum concentration of chloroauric acid was found to be 1 mM. Complete reduction of the metal ions within 5 hours by DBTE highlights the development of a novel ecofriendly route of biological synthesis of gold nanoparticles. This is the first paper on synthesis of gold nanoparticles using DBTE

    Self-nano Emulsifying Formulations: An Encouraging Approach for Bioavailability Enhancement and Future Perspective

    Get PDF
    Currently lipid-based formulations are playing a vital and promising role in improving the oral bioavailability of poorly water-soluble drugs. Lipid based formulations mainly consist of a drug dissolved in lipids such as triglycerides, glycerides, oils and surface active agent. Self nanoemulsifying formulations (SNEF) are isotropic mixtures of lipids/oils, surfactants and co-surfactants. On mild agitation followed by dilution in aqueous media, such as GI fluids, SNEF can form fine oil-in-water (o/w) nanoemulsions. Present chapter summarizes different types of lipid formulations with special emphasis on SNEF, availability of dosage forms, different components with natural surfactants from medicinal plants, mechanism of SNEF, recent advancements in oral drug delivery, solid SNEDDS, patents on SNEF and future prospects. SNEF emerging as powerful technique to improve solubility and commercialization of solid SNEF is the future novel drug delivery to improve bioavailability of poorly water soluble drugs

    Not Available

    No full text
    Not AvailableBackground: Occurrence of multiple biotic stresses on crop plants result in drastic yield losses which may have severe impact on the food security. It is a challenge to design strategies for simultaneous management of these multiple stresses. Hence, establishment of innovative approaches that aid in their management is critical. Here, we have introgressed a micro RNA-induced gene silencing (MIGS) based combinatorial gene construct containing seven target gene sequences of cotton leaf curl disease (CLCuD), cotton leaf hopper (Amrasca biguttula biguttula), cotton whitefly (Bemisia tabaci) and root-knot nematode (Meloidogyne incognita). Results: Stable transgenic lines of Nicotiana benthamiana were generated with the T-DNA harboring Arabidopsis miR173 target site fused to fragments of Sec23 and ecdysone receptor (EcR) genes of cotton leaf hopper and cotton whitefly. It also contained C2/replication associated protein (C2/Rep) and C4 (movement protein) along with βC1 gene of betasatellite to target CLCuD, and two FMRFamide-like peptide (FLP) genes, Mi-flp14 and Mi-flp18 of M. incognita. These transgenic plants were assessed for the amenability of MIGS approach for pest control by efficacy evaluation against M. incognita. Results showed successful production of small interfering RNA (siRNA) through the tasiRNA (trans-acting siRNA) pathway in the transgenic plants corresponding to Mi-flp18 gene. Furthermore, we observed reduced Mi-flp14 and Mi-flp18 transcripts (up to 2.37 ± 0.12-fold) in females extracted from transgenic plants. The average number of galls, total endoparasites, egg masses and number of eggs per egg mass reduced were in the range 27-62%, 39-70%, 38-65% and 34-49%, respectively. More importantly, MIGS transgenic plants showed 80% reduction in the nematode multiplication factor (MF). Conclusion: This study demonstrates successful validation of the MIGS approach in the model plant, N. benthamiana for efficacy against M. incognita, as a prelude to translation to cotton. © 2021 Society of Chemical Industry.DBT-BIRA

    Does tranexamic acid reduce blood loss during head and neck cancer surgery?

    No full text
    Background and Aims: Transfusion of blood and blood products poses several hazards. Antifibrinolytic agents are used to reduce perioperative blood loss. We decided to assess the effect of tranexamic acid (TA) on blood loss and the need for transfusion in head and neck cancer surgery. Methods: After Institutional Review Board approval, 240 patients undergoing supramajor head and neck cancer surgeries were prospectively randomised to either TA (10 mg/kg) group or placebo (P) group. After induction, the drug was infused by the anaesthesiologist, who was blinded to allocation, over 20 min. The dose was repeated every 3 h. Perioperative (up to 24 h) blood loss, need for transfusion and fluid therapy was recorded. Thromboelastography (TEG) was performed at fixed intervals in the first 100 patients. Patients were watched for post-operative complications. Results: Two hundred and nineteen records were evaluable. We found no difference in intraoperative blood loss (TA - 750 [600–1000] ml vs. P - 780 [150–2600] ml, P = 0.22). Post-operative blood loss was significantly more in the placebo group at 24 h (P - 200 [120–250] ml vs. TA - 250 [50–1050] ml, P = 0.009), but this did not result in higher number of patients needing transfusions (TA - 22/108 and P - 27/111 patients, P = 0.51). TEG revealed faster clot formation and minimal fibrinolysis. Two patients died of causes unrelated to study drug. Incidence of wound complications and deep venous thrombosis was similar. Conclusion: In head and neck cancer surgery, TA did not reduce intraoperative blood loss or need for transfusions. Perioperative TEG variables were similar. This may be attributed to pre-existing hypercoagulable state and minimal fibrinolysis in cancer patients

    ENHANCEMENT OF POLY PHASE INDUCTION MOTOR WORKING AS A ROTARY PHASE CONVERTER AND WELDING TRANSFORMER

    No full text
    In this paper, a model which is implemented on idea that, the Polyphase induction motor works as welding transformer and rotary phase converter on a single Polyphase Induction motor by redesigning of stator winding of that motor. In our proposed model, for obtaining these three functions the rotorremains as it is and we only changed the design of stator winding

    Enhancement of Poly Phase Induction Motor Working as a Rotary Phase Converter and Welding Transformer

    Full text link
    In this paper, a model which is implemented on idea that, the Polyphase induction motor works as welding transformer and rotary phase converter on a single Polyphase Induction motor by redesigning of stator winding of that motor. In our proposed model, for obtaining these three functions the rotorremains as it is and we only changed the design of stator winding

    Gloriosa superba Mediated Synthesis of Platinum and Palladium Nanoparticles for Induction of Apoptosis in Breast Cancer

    Get PDF
    Green chemistry approaches for designing therapeutically significant nanomedicine have gained considerable attention in the past decade. Herein, we report for the first time on anticancer potential of phytogenic platinum nanoparticles (PtNPs) and palladium nanoparticles (PdNPs) using a medicinal plant Gloriosa superba tuber extract (GSTE). The synthesis of the nanoparticles was completed within 5 hours at 100°C which was confirmed by development of dark brown and black colour for PtNPs and PdNPs, respectively, along with enhancement of the peak intensity in the UV-visible spectra. High-resolution transmission electron microscopy (HRTEM) showed that the monodispersed spherical nanoparticles were within a size range below 10 nm. Energy dispersive spectra (EDS) confirmed the elemental composition, while dynamic light scattering (DLS) helped to evaluate the hydrodynamic size of the particles. Anticancer activity against MCF-7 (human breast adenocarcinoma) cell lines was evaluated using MTT assay, flow cytometry, and confocal microscopy. PtNPs and PdNPs showed 49.65 ± 1.99% and 36.26 ± 0.91% of anticancer activity. Induction of apoptosis was most predominant in the underlying mechanism which was rationalized by externalization of phosphatidyl serine and membrane blebbing. These findings support the efficiency of phytogenic fabrication of nanoscale platinum and palladium drugs for management and therapy against breast cancer
    corecore