106 research outputs found

    Quantum mechanics based force field for carbon (QMFF-Cx) validated to reproduce the mechanical and thermodynamics properties of graphite

    Get PDF
    As assemblies of graphene sheets, carbon nanotubes, and fullerenes become components of new nanotechnologies, it is important to be able to predict the structures and properties of these systems. A problem has been that the level of quantum mechanics practical for such systems (density functional theory at the PBE level) cannot describe the London dispersion forces responsible for interaction of the graphene planes (thus graphite falls apart into graphene sheets). To provide a basis for describing these London interactions, we derive the quantum mechanics based force field for carbon (QMFF-Cx) by fitting to results from density functional theory calculations at the M06-2X level, which demonstrates accuracies for a broad class of molecules at short and medium range intermolecular distances. We carried out calculations on the dehydrogenated coronene (C24) dimer, emphasizing two geometries: parallel-displaced X (close to the observed structure in graphite crystal) and PD-Y (the lowest energy transition state for sliding graphene sheets with respect to each other). A third, eclipsed geometry is calculated to be much higher in energy. The QMFF-Cx force field leads to accurate predictions of available experimental mechanical and thermodynamics data of graphite (lattice vibrations, elastic constants, Poisson ratios, lattice modes, phonon dispersion curves, specific heat, and thermal expansion). This validates the use of M06-2X as a practical method for development of new first principles based generations of QMFF force fields

    Thermodynamics of liquids: standard molar entropies and heat capacities of common solvents from 2PT molecular dynamics

    Get PDF
    We validate here the Two-Phase Thermodynamics (2PT) method for calculating the standard molar entropies and heat capacities of common liquids. In 2PT, the thermodynamics of the system is related to the total density of states (DoS), obtained from the Fourier Transform of the velocity autocorrelation function. For liquids this DoS is partitioned into a diffusional component modeled as diffusion of a hard sphere gas plus a solid component for which the DoS(υ) → 0 as υ → 0 as for a Debye solid. Thermodynamic observables are obtained by integrating the DoS with the appropriate weighting functions. In the 2PT method, two parameters are extracted from the DoS self-consistently to describe diffusional contributions: the fraction of diffusional modes, f, and DoS(0). This allows 2PT to be applied consistently and without re-parameterization to simulations of arbitrary liquids. We find that the absolute entropy of the liquid can be determined accurately from a single short MD trajectory (20 ps) after the system is equilibrated, making it orders of magnitude more efficient than commonly used perturbation and umbrella sampling methods. Here, we present the predicted standard molar entropies for fifteen common solvents evaluated from molecular dynamics simulations using the AMBER, GAFF, OPLS AA/L and Dreiding II forcefields. Overall, we find that all forcefields lead to good agreement with experimental and previous theoretical values for the entropy and very good agreement in the heat capacities. These results validate 2PT as a robust and efficient method for evaluating the thermodynamics of liquid phase systems. Indeed 2PT might provide a practical scheme to improve the intermolecular terms in forcefields by comparing directly to thermodynamic properties

    Design of Covalent Organic Frameworks for Methane Storage

    Get PDF
    We designed 14 new covalent organic frameworks (COFs), which are expected to adsorb large amounts of methane (CH_4) at 298 K and up to 300 bar. We have calculated their delivery uptake using grand canonical Monte Carlo (GCMC) simulations. We also report their thermodynamic stability based on 7.5 ns molecular dynamics simulations. Two new frameworks, COF-103-Eth-trans and COF-102-Ant, are found to exceed the DOE target of 180 v(STP)/v at 35 bar for methane storage. Their performance is comparable to the best previously reported materials: PCN-14 and Ni-MOF-74. Our results indicate that using thin vinyl bridging groups aid performance by minimizing the interaction methane-COF at low pressure. This is a new feature that can be used to enhance loading in addition to the common practice of adding extra fused benzene rings. Most importantly, this report shows that pure nonbonding interactions, van der Waals (vdW) and electrostatic forces in light elements (C, O, B, H, and Si), can rival the enhancement in uptake obtained for microporous materials derived from early transition metals

    Understanding DNA based Nanostructures

    Get PDF
    We use molecular dynamics (MD) simulations to understand the structure, and stability of various Paranemic crossover (PX) DNA molecules and their topoisomer JX molecules, synthesized recently by Seeman and coworkers at New York University (NYU). Our studies include all atoms (4432 to 6215) of the PX structures with an explicit description of solvent and ions (for a total of up to 42,000 atoms) with periodic boundary conditions. We report the effect of divalent counterions Mg(+2) on the structural and thermodynamic properties of these molecules and compare them to our previously reported results in presence of monovalent Na+ ions. The dynamic structures averaged over the 3-nanosecond simulations preserves the Watson-Crick hydrogen bonding as well as the helical structure. We find that PX65 is the most stable structure both in Na+ and Mg(+2) in accordance with the experimental results. PX65 has helical twist and other helical structural parameters close to the values for normal B-DNA of similar length and sequence. Our strain energy calculations demonstrate that stability of the crossover structure increases with the increase in crossover points

    Electronic-Mechanical Coupling in Graphene from in situ Nanoindentation Experiments and Multiscale Atomistic Simulations

    Get PDF
    We present the in situ nanoindentation experiments performed on suspended graphene devices to introduce homogeneous tensile strain, while simultaneously carrying out electrical measurements. We find that the electrical resistance shows only a marginal change even under severe strain, and the electronic transport measurement confirms that there is no band gap opening for graphene under moderate uniform strain, which is consistent with our results from the first-principles informed molecular dynamics simulation

    Experimental Validation of the Predicted Binding Site of Escherichia coli K1 Outer Membrane Protein A to Human Brain Microvascular Endothelial Cells: Identification of Critical Mutations That Prevent E. coli Meningitis

    Get PDF
    Escherichia coli K1, the most common cause of meningitis in neonates, has been shown to interact with GlcNAc1–4GlcNAc epitopes of Ecgp96 on human brain microvascular endothelial cells (HBMECs) via OmpA (outer membrane protein A). However, the precise domains of extracellular loops of OmpA interacting with the chitobiose epitopes have not been elucidated. We report the loop-barrel model of these OmpA interactions with the carbohydrate moieties of Ecgp96 predicted from molecular modeling. To test this model experimentally, we generated E. coli K1 strains expressing OmpA with mutations of residues predicted to be critical for interaction with the HBMEC and tested E. coli invasion efficiency. For these same mutations, we predicted the interaction free energies (including explicit calculation of the entropy) from molecular dynamics (MD), finding excellent correlation (R^2 = 90%) with experimental invasion efficiency. Particularly important is that mutating specific residues in loops 1, 2, and 4 to alanines resulted in significant inhibition of E. coli K1 invasion in HBMECs, which is consistent with the complete lack of binding found in the MD simulations for these two cases. These studies suggest that inhibition of the interactions of these residues of Loop 1, 2, and 4 with Ecgp96 could provide a therapeutic strategy to prevent neonatal meningitis due to E. coli K1

    Absolute Entropy and Energy of Carbon Dioxide Using the Two-Phase Thermodynamic Model

    Get PDF
    The two-phase thermodynamic (2PT) model is used to determine the absolute entropy and energy of carbon dioxide over a wide range of conditions from molecular dynamics trajectories. The 2PT method determines the thermodynamic properties by applying the proper statistical mechanical partition function to the normal modes of a fluid. The vibrational density of state (DoS), obtained from the Fourier transform of the velocity autocorrelation function, converges quickly, allowing the free energy, entropy, and other thermodynamic properties to be determined from short 20-ps MD trajectories. The anharmonic effects in the vibrations are accounted for by the broadening of the normal modes into bands from sampling the velocities over the trajectory. The low frequency diffusive modes, which lead to finite DoS at zero frequency, are accounted for by considering the DoS as a superposition of gas-phase and solid-phase components (two phases). The analytical decomposition of the DoS allows for an evaluation of properties contributed by different types of molecular motions. We show that this 2PT analysis leads to accurate predictions of entropy and energy of CO_2 over a wide range of conditions (from the triple point to the critical point of both the vapor and the liquid phases along the saturation line). This allows the equation of state of CO_2 to be determined, which is limited only by the accuracy of the force field. We also validated that the 2PT entropy agrees with that determined from thermodynamic integration, but 2PT requires only a fraction of the time. A complication for CO_2 is that its equilibrium configuration is linear, which would have only two rotational modes, but during the dynamics it is never exactly linear, so that there is a third mode from rotational about the axis. In this work, we show how to treat such linear molecules in the 2PT framework

    On the absolute thermodynamics of water from computer simulations: A comparison of first-principles molecular dynamics, reactive and empirical force fields

    Get PDF
    We present the absolute enthalpy, entropy, heat capacity, and free energy of liquid water at ambient conditions calculated by the two-phase thermodynamic method applied to ab initio, reactive and classical molecular dynamics simulations. We find that the absolute entropy and heat capacity of liquid water from ab initio molecular dynamics (AIMD) is underestimated, but falls within the range of the flexible empirical as well as the reactive force fields. The origin of the low absolute entropy of liquid water from AIMD simulations is due to an underestimation of the translational entropy by 20% and the rotational entropy by 40% compared to the TIP3P classical water model, consistent with previous studies that reports low diffusivity and increased ordering of liquid water from AIMD simulations. Classical MD simulations with rigid water models tend to be in better agreement with experiment (in particular TIP3P yielding the best agreement), although the TIP4P-ice water model, the only empirical force field that reproduces the experimental melting temperature, has the lowest entropy, perhaps expectedly. This reiterates the limitations of existing empirical water models in simultaneously capturing the thermodynamics of solid and liquid phases. We find that the quantum corrections to heat capacity of water can be as large as 60%. Although certain water models are computed to yield good absolute free energies of water compared to experiments, they are often due to the fortuitous enthalpy-entropy cancellation, but not necessarily due to the correct descriptions of enthalpy and entropy separately

    Arginine, a Key Residue for the Enhancing Ability of an Antifreeze Protein of the Beetle Dendroides canadensis

    Get PDF
    Antifreeze proteins (AFPs) can produce a difference between the nonequilibrium freezing point and the melting point, termed thermal hysteresis (TH). The TH activity of an antifreeze protein (AFP) depends on the specific AFP and its concentration as well as the presence of cosolutes including low molecular mass solutes and/or proteins. We recently identified series of carboxylates and polyols as efficient enhancers for an AFP from the beetle Dendroides canadensis. In this study, we chemically modified DAFP-1 using the arginine-specific reagent 1,2-cyclohexanedione. We demonstrated that 1,2-cyclohexanedione specifically modifies one arginine residue and the modified DAFP-1 loses its enhancing ability completely or partially in the presence of previously identified enhancers. The stronger the enhancement ability of the enhancer on the native DAFP-1, the stronger the enhancement effect of the enhancer on the modified DAFP-1. The weaker enhancers (e.g., glycerol) completely lose their enhancement effect on the modified DAFP-1 due to their inability to compete with 1,2-cyclohexanedione for the arginine residue. Regeneration of the arginine residue using hydroxylamine fully restored the enhancing ability of DAFP-1. These studies indicated that an arginine residue is critical for the enhancing ability of DAFP-1 and the guanidinium group of the arginine residue is important for its interaction with the enhancers, where the general mechanism of arginine−ligand interaction is borne. This work may initiate a complete mechanistic study of the enhancement effect in AFPs
    corecore