63 research outputs found
PLASMA MYELOPEROXIDASE LEVEL AIDS IN PREDICTING LONG-TERM OUTCOME OF ACUTE MYOCARDIAL INFARCTION
Investigation of pilot scale manufacturing of polysulfone (PSf) membranes by wet phase inversion method
Membranes are used as a support layer for the fabrication of thin film composite membranes. Sup- port layer properties can affect many performance parameters of TFC membranes such as flux, rejection, morphology and stability against pressure. Although studies in lab scale fabrication exist, investigation the pilot scale polysulfone membrane fabrication has not been done. In this study, opti- mization of polysulfone support membranes fabrication was conducted in pilot scale. Coagulation bath temperature; casting speed and solution content were selected as main parameters for the opti- mization. Membrane surface properties were investigated in details with SEM and pore size dis- tribution. Membrane performance were determined with permeability experiments. Differences in pilot scale and lab scale membrane manufacturing were observed and compared with literature. On the contrary to literature it was found that, coagulation bath temperature has exact opposite effect in pilot scale membrane formation compared to lab scale studies. 10°C drop (from 25°C to 15°C) in coagulation bath temperature decreased mean pore size of membranes from 27 nm to 8 nm and per- meability from 464 l/m2h to 100 l/m2h while everything else was kept constant
Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study
Summary
Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally.
Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies
have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of
the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income
countries globally, and identified factors associated with mortality.
Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to
hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis,
exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a
minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical
status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary
intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause,
in-hospital mortality for all conditions combined and each condition individually, stratified by country income status.
We did a complete case analysis.
Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital
diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal
malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome
countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male.
Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3).
Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income
countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups).
Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome
countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries;
p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients
combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11],
p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20
[1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention
(ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety
checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed
(ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of
parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65
[0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality.
Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome,
middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will
be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger
than 5 years by 2030
Substitution of petroleum-based polymeric materials used in the electrospinning process with nanocellulose: A review and future outlook
Tubular PAN/CNC Thin Film Nanocomposite (TFN) Pressure Retarded Osmosis (PRO) Membrane: Fabrication and Preliminary Evaluation in Desalination Process
Abstract
The aim of this work is to fabricate tubular nanocellulose-based nanofiber pressure retarded osmosis (PRO) by electrospinning. The PRO process requires high performance, high flux, high rejection and resistant membranes under harsh conditions. Because conventional phase-inversion membranes are not sufficient to perform the required water flux. Because of this reason, alternative membrane fabrication methods need to be develop. Recently, lots of studies are carried out to fabricate strong enough nanofiber pressure retarded osmosis membranes which are resistant higher pressure pressure while providing high flux and high rejection rates. In this study, cellulose nanocrystal (CNC) added PAN nanocomposite nanofiber PRO membranes successfully fabricated by tailor made electrospinning equipment. According to the Scanning Electron Microscopy (SEM), FT-IR, Dynamic Mechanical Analysis, Porometer and Contact Angle analysis results, it is concluded that PAN and CNC provided a complete mixture and the addition of CNC increased the mechanical strength in the PAN membranes which is the crucial phenomena in PRO applications.In this study, the newly fabricated membrane achieves a higher PRO water flux of 405.38 LMH with using a 1 M NaCl and a DI as feed water. The corresponding salt flux is found as 2.10 gMH which is higher than our previous study (Pasaoglu et al., 2020). The selectivity of the reversed flux represented by the ratio of the water flow to the reversed salt flux (Jw/ Js) was able to be kept as high as 193.03 L/g for PRO operation.As far as we know, the performance of the work developed membrane in this study has shawn better performance than all PRO membranes reported in the literature previously.</jats:p
Tubular PAN/CNC thin film nanocomposite (TFN) pressure retarded osmosis (PRO) membrane: fabrication and preliminary evaluation in desalination process
Comparison of microbial adhesion and biofilm formation on orthodontic wax materials; an in vitro study
Resource Recovery from Waste, Water and Wastewaters with Membrane Technologies
In this study, critical elements (Boron (B) and Rare Earth Elements (REE)) recovery is
studied with membrane technologies. Concentrated boron can be recovered by using
different technologies. Membrane technologies such as reverse osmosis have a potential
to concentrate the boron. pH of the solution is very important if reverse osmosis is
applied. Removal of boron at pH levels of 7 and 10 increases from 80% to 97% with
reverse osmosis membranes. Another critical element is rare earth elements in the World.
Rare earth elements (REE) is a group of elements that involve lanthanides, scandium and
yttrium. A successful REE transport for wastewater was observed compared with the
concentrate flow of the acidic waste slime.This study was financially supported by The Scientific and Technological Research
Council of Turkey (TUBITAK) (Project no:117Y357), Istanbul Technical University
(ITU) Scientific Research Project (Project ID: 41893) and Eti Mining Operations General
Directorate. The authors would also like to thank Geochemistry Research Laboratory for
XRF analysi
Polyethersulfone/polyacrylonitrile blended ultrafiltration membranes: preparation, morphology and filtration properties
Polyethersulfone (PES)/polyacrylonitrile (PAN) membranes have been paid attention among membrane research subjects. However, very few studies are included in the literature. In our study, asymmetric ultrafiltration (UF) membranes were prepared from blends of PES/PAN with phase inversion method using water as coagulation bath. Polyvinylpyrrolidone (PVP) with Mw of 10,000 Da was used as pore former agent. N,N-dimethylformamide was used as solvent. The effects of different percentage of PVP and PES/PAN composition on morphology and water filtration properties were investigated. Membrane performances were examined using pure water and lake water filtration studies. Performances of pure water were less with the addition of PAN into the PES polymer casting solutions. However, long-term water filtration tests showed that PES/PAN blend membranes anti-fouling properties were much higher than the neat PES membranes. The contact angles of PES/PAN membranes were lower than neat PES membranes because of PAN addition in PES polymer casting solutions. Furthermore, it was found that PES/PAN blend UF membranes' dynamic mechanical analysis properties in terms of Young's modules were less than neat PES membrane because of decreasing amount of PES polymer.</jats:p
- …