3,279 research outputs found
Recommended from our members
Arizona’s Rising STEM Occupational Demands and Declining Participation in the Scientific Workforce: An Examination of Attitudes among African Americans toward STEM College Majors and Careers
According to the Bureau of Labor Statistics (2008), science, technology, engineering, and math (STEM) occupations constitute a growing sector of Arizona’s economy. However, the number of African Americans earning degrees related to these occupations has not kept pace with this growth. Increasing the participation of African Americans in STEM education fields and subsequent related occupations in Arizona is vital to growing and maintaining the state’s economic stature. This objective is made even more compelling given that each year, from 2008– 2018, there are 3,671 projected job openings in STEM fields in Arizona. This study explores the extent to which the attitudes held by African Americans in Arizona toward STEM related majors and careers influence their likelihood of joining the state’s scientific workforce. Our analyses reveal the importance of career consideration, confidence in one’s ability to be successful in a STEM related field, and family support of the pursuit of STEM education and careers.Educatio
Therapeutic and educational objectives in robot assisted play for children with autism
“This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.” DOI: 10.1109/ROMAN.2009.5326251This article is a methodological paper that describes the therapeutic and educational objectives that were identified during the design process of a robot aimed at robot assisted play. The work described in this paper is part of the IROMEC project (Interactive Robotic Social Mediators as Companions) that recognizes the important role of play in child development and targets children who are prevented from or inhibited in playing. The project investigates the role of an interactive, autonomous robotic toy in therapy and education for children with special needs. This paper specifically addresses the therapeutic and educational objectives related to children with autism. In recent years, robots have already been used to teach basic social interaction skills to children with autism. The added value of the IROMEC robot is that play scenarios have been developed taking children's specific strengths and needs into consideration and covering a wide range of objectives in children's development areas (sensory, communicational and interaction, motor, cognitive and social and emotional). The paper describes children's developmental areas and illustrates how different experiences and interactions with the IROMEC robot are designed to target objectives in these areas.Final Published versio
Results from two years of ozone data taken with a new, ground-based microwave instrument: An overview
An overview of two years of data obtained with a ground-based microwave instrument is given. Intercomparisons with data obtained by the co-located JPL lidar and by SAGE 2 during near overpasses of the site are discussed, as are comparisons with mesospheric data taken earlier by SME and LIMS. Observations of diurnal variations of mesospheric ozone are shown
Recommended from our members
Ensemble prediction for nowcasting with a convection-permitting model - II: forecast error statistics
A 24-member ensemble of 1-h high-resolution forecasts over the Southern United Kingdom is used to study short-range forecast error statistics. The initial conditions are found from perturbations from an ensemble transform Kalman filter. Forecasts from this system are assumed to lie within the bounds of forecast error of an operational forecast system. Although noisy, this system is capable of producing physically reasonable statistics which are analysed and compared to statistics implied from a variational assimilation system. The variances for temperature errors for instance show structures that reflect convective activity. Some variables, notably potential temperature and specific humidity perturbations, have autocorrelation functions that deviate from 3-D isotropy at the convective-scale (horizontal scales less than 10 km). Other variables, notably the velocity potential for horizontal divergence perturbations, maintain 3-D isotropy at all scales. Geostrophic and hydrostatic balances are studied by examining correlations between terms in the divergence and vertical momentum equations respectively. Both balances are found to decay as the horizontal scale decreases. It is estimated that geostrophic balance becomes less important at scales smaller than 75 km, and hydrostatic balance becomes less important at scales smaller than 35 km, although more work is required to validate these findings. The implications of these results for high-resolution data assimilation are discussed
Treatment of gastroparesis: a multidisciplinary clinical review
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75594/1/j.1365-2982.2006.00760.x.pd
OPAL: Network for the Detection of Stratospheric Change Ozone Profiler Assessment at Lauder, New Zealand. 2. Intercomparison of Revised Results.
Recommended from our members
An assessment of brain function predicts functional gains in a clinical stroke trial
Recommended from our members
Predicting functional gains in a stroke trial.
A number of therapies in development for patients with central nervous system injury aim to reduce disability by improving function of surviving brain elements rather than by salvaging tissue. The current study tested the hypothesis that, after adjusting for a number of clinical assessments, a measure of brain function at baseline would improve prediction of behavioral gains after treatment.Twenty-four patients with chronic stroke underwent baseline clinical and functional MRI assessments, received 6 weeks of rehabilitation therapy with or without investigational motor cortex stimulation, and then had repeat assessments. Thirteen baseline clinical/radiological measures were evaluated for ability to predict subsequent trial-related gains.Across all patients, bivariate analyses found that greater trial-related functional gains were predicted by (1) smaller infarct volume, (2) greater baseline clinical status, and (3) lower degree of activation in stroke-affected motor cortex on baseline functional MRI. When these 3 variables were further assessed using multivariate linear regression modeling, only lower motor cortex activation and greater clinical status at baseline remained significant predictors. Note that lower baseline motor cortex activation was also associated with larger increases in motor cortex activation after treatment.Lower motor cortex activity at baseline predicted greater behavioral gains after therapy, even after controlling for a number of clinical assessments. The boosts in cortical activity that paralleled behavioral gains suggest that in some patients, low baseline cortical activity represents underuse of surviving cortical resources. A measure of brain function might be important for optimal clinical decision-making in the context of a restorative intervention
Feedback under the microscope: thermodynamic structure and AGN driven shocks in M87
(abridged) Using a deep Chandra exposure (574 ks), we present high-resolution
thermodynamic maps created from the spectra of 16,000 independent
regions, each with 1,000 net counts. The excellent spatial resolution of
the thermodynamic maps reveals the dramatic and complex temperature, pressure,
entropy and metallicity structure of the system. Excluding the 'X-ray arms',
the diffuse cluster gas at a given radius is strikingly isothermal. This
suggests either that the ambient cluster gas, beyond the arms, remains
relatively undisturbed by AGN uplift, or that conduction in the intracluster
medium (ICM) is efficient along azimuthal directions. We confirm the presence
of a thick (40 arcsec or 3 kpc) ring of high pressure gas at a
radius of 180 arcsec (14 kpc) from the central AGN. We verify that
this feature is associated with a classical shock front, with an average Mach
number M = 1.25. Another, younger shock-like feature is observed at a radius of
40 arcsec (3 kpc) surrounding the central AGN, with an estimated
Mach number M > 1.2. As shown previously, if repeated shocks occur every
10 Myrs, as suggested by these observations, then AGN driven weak shocks
could produce enough energy to offset radiative cooling of the ICM. A high
significance enhancement of Fe abundance is observed at radii 350 - 400 arcsec
(27 - 31 kpc). This ridge is likely formed in the wake of the rising bubbles
filled with radio-emitting plasma that drag cool, metal-rich gas out of the
central galaxy. We estimate that at least solar masses of
Fe has been lifted and deposited at a radius of 350-400 arcsec; approximately
the same mass of Fe is measured in the X-ray bright arms, suggesting that a
single generation of buoyant radio bubbles may be responsible for the observed
Fe excess at 350 - 400 arcsec.Comment: 18 pages, 16 figures. Accepted to MNRA
- …