4,791 research outputs found
Techniques, based on extremal subspaces, for improved reconstruction of signals from samples
Extremal subspaces techniques for reconstruction of signal from sample
Monolithic microwave integrated circuit water vapor radiometer
A proof of concept Monolithic Microwave Integrated Circuit (MMIC) Water Vapor Radiometer (WVR) is under development at the Jet Propulsion Laboratory (JPL). WVR's are used to remotely sense water vapor and cloud liquid water in the atmosphere and are valuable for meteorological applications as well as for determination of signal path delays due to water vapor in the atmosphere. The high cost and large size of existing WVR instruments motivate the development of miniature MMIC WVR's, which have great potential for low cost mass production. The miniaturization of WVR components allows large scale deployment of WVR's for Earth environment and meteorological applications. Small WVR's can also result in improved thermal stability, resulting in improved calibration stability. Described here is the design and fabrication of a 31.4 GHz MMIC radiometer as one channel of a thermally stable WVR as a means of assessing MMIC technology feasibility
Electric field effect on superconductivity at complex oxide interfaces
We examine the enhancement of the interfacial superconductivity between
LaAlO and SrTiO by an effective electric field. Through the
breaking of inversion symmetry at the interface, we show that a term coupling
the superfluid density and an electric field can augment the superconductivity
transition temperature. Microscopically, we show that an electric field can
also produce changes in the carrier density by relating the measured
capacitance to the density of states. Through the electron-phonon induced
interaction in bulk SrTiO, we estimate the transition temperature.Comment: 7 Pages, Submitted to Physical Revie
Induced polarization at a paraelectric/superconducting interface
We examine the modified electronic states at the interface between
superconducting and ferro(para)-electric heterostructures. We find that
electric polarization and superconducting order parameters can be
significantly modified due to coupling through linear terms brought about by
explicit symmetry breaking at the interface. Using an effective action and a
Ginzburg-Landau formalism, we show that an interaction term linear in the
electric polarization will modify the superconducting order parameter at
the interface. This also produces modulation of a ferroelectric polarization.
It is shown that a paraelectric-superconductor interaction will produce an
interface-induced ferroelectric polarization.Comment: 4 pages, 3 figures, Submitted to Phys. Rev.
Weak Values with Decoherence
The weak value of an observable is experimentally accessible by weak
measurements as theoretically analyzed by Aharonov et al. and recently
experimentally demonstrated. We introduce a weak operator associated with the
weak values and give a general framework of quantum operations to the W
operator in parallel with the Kraus representation of the completely positive
map for the density operator. The decoherence effect is also investigated in
terms of the weak measurement by a shift of a probe wave function of continuous
variable. As an application, we demonstrate how the geometric phase is affected
by the bit flip noise.Comment: 17 pages, 3 figure
Mechanical Control of Spin States in Spin-1 Molecules and the Underscreened Kondo Effect
The ability to make electrical contact to single molecules creates
opportunities to examine fundamental processes governing electron flow on the
smallest possible length scales. We report experiments in which we controllably
stretch individual cobalt complexes having spin S = 1, while simultaneously
measuring current flow through the molecule. The molecule's spin states and
magnetic anisotropy were manipulated in the absence of a magnetic field by
modification of the molecular symmetry. This control enabled quantitative
studies of the underscreened Kondo effect, in which conduction electrons only
partially compensate the molecular spin. Our findings demonstrate a mechanism
of spin control in single-molecule devices and establish that they can serve as
model systems for making precision tests of correlated-electron theories.Comment: main text: 5 pages, 4 figures; supporting information attached; to
appear in Science
Radial Velocities of Six OB Stars
We present new results from a radial velocity study of six bright OB stars
with little or no prior measurements. One of these, HD 45314, may be a
long-period binary, but the velocity variations of this Be star may be related
to changes in its circumstellar disk. Significant velocity variations were also
found for HD 60848 (possibly related to nonradial pulsations) and HD 61827
(related to wind variations). The other three targets, HD 46150, HD 54879, and
HD 206183, are constant velocity objects, but we note that HD 54879 has
H emission that may originate from a binary companion. We illustrate
the average red spectrum of each target.Comment: Accepted for publication in PASP July 2007 issu
Multi-objective engineering shape optimization using differential evolution interfaced to the Nimrod/O tool
This paper presents an enhancement of the Nimrod/O optimization tool by interfacing DEMO, an external multiobjective optimization algorithm. DEMO is a variant of differential evolution – an algorithm that has attained much popularity in the research community, and this work represents the first time that true multiobjective optimizations have been performed with Nimrod/O. A modification to the DEMO code enables multiple objectives to be evaluated concurrently. With Nimrod/O’s support for parallelism, this can reduce the wall-clock time significantly for compute intensive objective function evaluations. We describe the usage and implementation of the interface and present two optimizations. The first is a two objective mathematical function in which the Pareto front is successfully found after only 30 generations. The second test case is the three-objective shape optimization of a rib-reinforced wall bracket using the Finite Element software, Code_Aster. The interfacing of the already successful packages of Nimrod/O and DEMO yields a solution that we believe can benefit a wide community, both industrial and academic
Recommended from our members
Thorium Energy Futures
The potential for thorium as an alternative or supplement to uranium in fission power generation has long been recognised, and several reactors, of various types, have already operated using thorium-based fuels. Accelerator Driven Subcritical (ADS) systems have benefits and drawbacks when compared to conventional critical thorium reactors, for both solid and molten salt fuels. None of the four options – liquid or solid, with or without an accelerator – can yet be rated as better or worse than the other three, given today's knowledge. We outline the research that will be necessary to lead to an informed choice
- …