2,764 research outputs found
Ultraviolet and Optical Observations of OB Associations and Field Stars in the Southwest Region of the Large Magellanic Cloud
Using photometry from the Ultraviolet Imaging Telescope (UIT) and photometry
and spectroscopy from three ground-based optical datasets we have analyzed the
stellar content of OB associations and field areas in and around the regions N
79, N 81, N 83, and N 94 in the LMC. We compare data for the OB association
Lucke-Hodge 2 (LH 2) to determine how strongly the initial mass function (IMF)
may depend on different photometric reductions and calibrations. We also
correct for the background contribution of field stars, showing the importance
of correcting for field star contamination in determinations of the IMF of star
formation regions. It is possible that even in the case of an universal IMF,
the variability of the density of background stars could be the dominant factor
creating the differences between calculated IMFs for OB associations.
We have also combined the UIT data with the Magellanic Cloud Photometric
Survey to study the distribution of the candidate O-type stars in the field. We
find a significant fraction, roughly half, of the candidate O-type stars are
found in field regions, far from any obvious OB associations. These stars are
greater than 2 arcmin (30 pc) from the boundaries of existing OB associations
in the region, which is a distance greater than most O-type stars with typical
dispersion velocities will travel in their lifetimes. The origin of these
massive field stars (either as runaways, members of low-density star-forming
regions, or examples of isolated massive star formation) will have to be
determined by further observations and analysis.Comment: 16 pages, 10 figures (19 PostScript files), tabular data + header
file for Table 1 (2 ASCII files). File format is LaTeX/AASTeX v.502 using the
emulateapj5 preprint style (included). Also available at
http://www.boulder.swri.edu/~joel/papers.html . To appear in the February
2001 issue of the Astronomical Journa
The Nature and Frequency of the Gas Outbursts in Comet 67P/Churyumov-Gerasimenko observed by the Alice Far-ultraviolet Spectrograph on Rosetta
Alice is a far-ultraviolet imaging spectrograph onboard Rosetta that, amongst
multiple objectives, is designed to observe emissions from various atomic and
molecular species from within the coma of comet 67P/Churyumov-Gerasimenko. The
initial observations, made following orbit insertion in August 2014, showed
emissions of atomic hydrogen and oxygen spatially localized close to the
nucleus and attributed to photoelectron impact dissociation of H2O vapor.
Weaker emissions from atomic carbon were subsequently detected and also
attributed to electron impact dissociation, of CO2, the relative H I and C I
line intensities reflecting the variation of CO2 to H2O column abundance along
the line-of-sight through the coma. Beginning in mid-April 2015, Alice
sporadically observed a number of outbursts above the sunward limb
characterized by sudden increases in the atomic emissions, particularly the
semi-forbidden O I 1356 multiplet, over a period of 10-30 minutes, without a
corresponding enhancement in long wavelength solar reflected light
characteristic of dust production. A large increase in the brightness ratio O I
1356/O I 1304 suggests O2 as the principal source of the additional gas. These
outbursts do not correlate with any of the visible images of outbursts taken
with either OSIRIS or the navigation camera. Beginning in June 2015 the nature
of the Alice spectrum changed considerably with CO Fourth Positive band
emission observed continuously, varying with pointing but otherwise fairly
constant in time. However, CO does not appear to be a major driver of any of
the observed outbursts.Comment: 6 pages, 4 figures, accepted for publication in the Astrophysical
Journal Letter
Cells exhibiting strong p16INK4a promoter activation in vivo display features of senescence
The activation of cellular senescence throughout the lifespan promotes tumor suppression, whereas the persistence of senescent cells contributes to aspects of aging. This theory has been limited, however, by an inability to identify and isolate individual senescent cells within an intact organism. Toward that end, we generated a murine reporter strain by “knocking-in” a fluorochrome, tandem-dimer Tomato (tdTom), into exon 1α of the p16 INK4a locus. We used this allele (p16 tdTom ) for the enumeration, isolation, and characterization of individual p16 INK4a -expressing cells (tdTom + ). The half-life of the knocked-in transcript was shorter than that of the endogenous p16 INK4a mRNA, and therefore reporter expression better correlated with p16 INK4a promoter activation than p16 INK4a transcript abundance. The frequency of tdTom + cells increased with serial passage in cultured murine embryo fibroblasts from p16 tdTom/+ mice. In adult mice, tdTom + cells could be readily detected at low frequency in many tissues, and the frequency of these cells increased with aging. Using an in vivo model of peritoneal inflammation, we compared the phenotype of cells with or without activation of p16 INK4a and found that tdTom + macrophages exhibited some features of senescence, including reduced proliferation, senescence-associated β-galactosidase (SA-β-gal) activation, and increased mRNA expression of a subset of transcripts encoding factors involved in SA-secretory phenotype (SASP). These results indicate that cells harboring activation of the p16 INK4a promoter accumulate with aging and inflammation in vivo, and display characteristics of senescence
The Ultraviolet Imaging Telescope: Instrument and Data Characteristics
The Ultraviolet Imaging Telescope (UIT) was flown as part of the Astro
observatory on the Space Shuttle Columbia in December 1990 and again on the
Space Shuttle Endeavor in March 1995. Ultraviolet (1200-3300 Angstroms) images
of a variety of astronomical objects, with a 40 arcmin field of view and a
resolution of about 3 arcsec, were recorded on photographic film. The data
recorded during the first flight are available to the astronomical community
through the National Space Science Data Center (NSSDC); the data recorded
during the second flight will soon be available as well. This paper discusses
in detail the design, operation, data reduction, and calibration of UIT,
providing the user of the data with information for understanding and using the
data. It also provides guidelines for analyzing other astronomical imagery made
with image intensifiers and photographic film.Comment: 44 pages, LaTeX, AAS preprint style and EPSF macros, accepted by PAS
BlackOPs: Increasing confidence in variant detection through mappability filtering
Identifying variants using high-throughput sequen-cing data is currently a challenge because true biological variants can be indistinguishable from technical artifacts. One source of technical arti-fact results from incorrectly aligning experimen-tally observed sequences to their true genomic origin (‘mismapping’) and inferring differences in mismapped sequences to be true variants. We de-veloped BlackOPs, an open-source tool that simu-lates experimental RNA-seq and DNA whole exome sequences derived from the reference genome, aligns these sequences by custom parameters, detects variants and outputs a blacklist of positions and alleles caused by mismapping. Blacklist
The future of climate modeling
Recently a number of scientists have proposed substantial changes to the practice of
climate modeling, though they disagree over what those changes should be. We provide an
overview and critical examination of three leading proposals: the unified approach, the
hierarchy approach and the pluralist approach. The unified approach calls for an accelerated
development of high-resolution models within a seamless prediction framework. The hierarchy
approach calls for more attention to the development and systematic study of hierarchies of
related models, with the aim of advancing understanding. The pluralist approach calls for
greater diversity in modeling efforts, including, on some of its variants, more attention to
empirical modeling. After identifying some of the scientific and institutional challenges faced
by these proposals, we consider their expected gains and costs, relative to a business-as-usual
modeling scenario.We find the proposals to be complementary, having valuable synergies. But
since resource limitations make it unlikely that all three will be pursued, we offer some
reflections on more limited changes in climate modeling that seem well within reach and that
can be expected to yield substantial benefits
Particle-Like Solutions of the Einstein-Dirac Equations
The coupled Einstein-Dirac equations for a static, spherically symmetric
system of two fermions in a singlet spinor state are derived. Using numerical
methods, we construct an infinite number of soliton-like solutions of these
equations. The stability of the solutions is analyzed. For weak coupling (i.e.,
small rest mass of the fermions), all the solutions are linearly stable (with
respect to spherically symmetric perturbations), whereas for stronger coupling,
both stable and unstable solutions exist. For the physical interpretation, we
discuss how the energy of the fermions and the (ADM) mass behave as functions
of the rest mass of the fermions. Although gravitation is not renormalizable,
our solutions of the Einstein-Dirac equations are regular and well-behaved even
for strong coupling.Comment: 31 pages, LaTeX, 21 PostScript figures, some references adde
- …