250 research outputs found

    Akt regulates the expression of MafK, synaptotagmin I, and syntenin-1, which play roles in neuronal function

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Akt regulates various cellular processes, including cell growth, survival, and metabolism. Recently, Akt's role in neurite outgrowth has also emerged. We thus aimed to identify neuronal function-related genes that are regulated by Akt.</p> <p>Methods</p> <p>We performed suppression subtractive hybridization on two previously established PC12 sublines, one of which overexpresses the wild-type (WT) form and the other, the dominant-negative (DN) form of Akt. These sublines respond differently to NGF's neuronal differentiation effect.</p> <p>Results</p> <p>A variety of genes was identified and could be classified into several functional groups, one of which was developmental processes. Two genes involved in neuronal differentiation and function were found in this group. v-Maf musculoaponeurotic fibrosarcoma oncogene homolog K (MafK) induces the neuronal differentiation of PC12 cells and immature telencephalon neurons, and synaptotagmin I (SytI) is essential for neurotransmitter release. Another gene, <it>syntenin-1 </it>(<it>Syn-1</it>) was also recognized in the same functional group into which <it>MafK </it>and <it>SytI </it>were classified. Syn-1 has been reported to promote the formation of membrane varicosities in neurons. Quantitative reverse transcription polymerase chain reaction analyses show that the transcript levels of these three genes were lower in PC12 (WT-Akt) cells than in parental PC12 and PC12 (DN-Akt) cells. Furthermore, treatment of PC12 (WT-Akt) cells with an Akt inhibitor resulted in the increase of the expression of these genes and the improvement of neurite outgrowth. These results indicate that dominant-negative or pharmacological inhibition of Akt increases the expression of <it>MafK</it>, <it>SytI</it>, and <it>Syn-1 </it>genes. Using lentiviral shRNA to knock down endogenous Syn-1 expression, we demonstrated that Syn-1 promotes an increase in the numbers of neurites and branches.</p> <p>Conclusions</p> <p>Taken together, these results indicate that Akt negatively regulates the expression of <it>MafK</it>, <it>SytI</it>, and <it>Syn-1 </it>genes that all participate in regulating neuronal integrity in some way or another.</p

    Synergistic effect of Indium and Gallium co-doping on growth behavior and physical properties of hydrothermally grown ZnO nanorods

    Get PDF
    We synthesized ZnO nanorods (NRs) using simple hydrothermal method, with the simultaneous incorporation of gallium (Ga) and indium (In), in addition, investigated the co-doping effect on the morphology, microstructure, electronic structure, and electrical/optical properties. The growth behavior of the doped NRs was affected by the nuclei density and polarity of the (001) plane. The c-axis parameter of the co-doped NRs was similar to that of undoped NRs due to the compensated lattice distortion caused by the presence of dopants that are both larger (In3+) and smaller (Ga3+) than the host Zn2+ cations. Red shifts in the ultraviolet emission peaks were observed in all doped NRs, owing to the combined effects of NR size, band gap renormalization, and the presence of stacking faults created by the dopant-induced lattice distortions. In addition, the NR/p-GaN diodes using co-doped NRs exhibited superior electrical conductivity compared to the other specimens due to the increase in the charge carrier density of NRs and the relatively large effective contact area of (001) planes. The simultaneous doping of In and Ga is therefore anticipated to provide a broader range of optical, physical, and electrical properties of ZnO NRs for a variety of opto-electronic applications

    Development of the upgraded single crystal dispersion interferometer (SCDI-U) and its first measurements of the line integrated electron densities in KSTAR during shattered pellet injections

    Get PDF
    Dispersion interferometers (DI) are widely used to measure line integrated electron densities in many fusion devices. A recent development of a heterodyne single crystal DI (SCDI) with a laser wavelength of 1064 nm (Lee et al 2021 Rev. Sci. Instrum. 92 033536) allows an easier and simpler optical setup by using only one, instead of two, nonlinear crystal. It is found that the reported heterodyne SCDI with an acoustic-optical modulator (AOM) has different beam paths between the frequency-shifted, via the AOM, fundamental and second harmonics which act as the reference beams. Such a separation of the reference beams inevitably produces non-removable phase shifts associated with mechanical vibrations, resulting in a reduction of the removing efficiency of the mechanical vibrations that DI systems can provide. By utilizing the fact that the diffraction angle due to the AOM is inversely proportional to the frequency of the laser beam and linearly proportional to an order of the frequency-shift, the SCDI-Upgrade (SCDI-U), which has complete overlap of the optical paths for both probing and reference beams from the laser source to the detectors, is proposed in this work. Its first measurements in KSTAR during shattered pellet injections are reported, and results obtained by the SCDI-U are compared with those from the existing two-color interferometer (TCI) in KSTAR. It is found that the SCDI-U measures the electron density more reliably during such an abrupt and large density change than the TCI does. Qualitative analyses on the effects of different injection schemes of the shattered pellets and possible application of the SCDI-U for ITER are also discussed

    Hearing Abilities at Ultra-High Frequency in Patients with Tinnitus

    Get PDF
    ObjectivesTo compare tinnitus patients who have normal hearing between 250 Hz and 8 kHz with normal controls with regard to the ability of each group to hear extended high-frequency pure tone thresholds.MethodsWe enrolled 18 tinnitus patients, each of whom had a threshold of HL <25 dB and threshold differences of <10 dB between ears at frequencies of 250 and 500 Hz and 1, 2, 4, and 8 kHz. We also enrolled age- and gender-matched normal volunteers (10 ears), for each patient. Extended high frequency pure tone audiometry was performed, and the mean hearing thresholds at 10, 12, 14, and 16 kHz of each tinnitus ear were compared with those of the 10 age- and sex-matched normal ears.ResultsOf the 18 patients with tinnitus, 12 had significantly increased hearing thresholds at more than one of the four high frequencies, compared with the normal group. When we assessed results according to frequency, we found that 8 patients had decreased hearing ability at 10 kHz, 10 at 12 kHz, 8 at 14 kHz, and 4 at 16 kHz.ConclusionSome patients with tinnitus who have normal hearing below 8 kHz have decreased hearing ability at extended high-frequencies. Thus, the proportion of patients with tinnitus who have normal hearing over the entire audible range is smaller than in previous reports

    YAF2 promotes TP53-mediated genotoxic stress response via stabilization of PDCD5

    Get PDF
    AbstractProgrammed cell death 5 (PDCD5) plays a crucial role in TP53-mediated apoptosis, but the regulatory mechanism of PDCD5 itself during apoptosis remains obscure. We identified YY1-associated factor 2 (YAF2) as a novel PDCD5-interacting protein in a yeast two-hybrid screen for PDCD5-interacting proteins. We found that YY1-associated factor 2 (YAF2) binds to and increases PDCD5 stability by inhibiting the ubiquitin-dependent proteosomal degradation pathway. However, knocking-down of YAF2 diminishes the levels of PDCD5 protein but not the levels of PDCD5 mRNA. Upon genotoxic stress response, YAF2 promotes TP53 activation via association with PDCD5. Strikingly, YAF2 failed to promote TP53 activation in the deletion of PDCD5, whereas restoration of wild-type PDCD5WT efficiently reversed the ineffectiveness of YAF2 on TP53 activation. Conversely, PDCD5 efficiently overcame the knockdown effect of YAF2 on ET-induced TP53 activation. Finally, impaired apoptosis upon PDCD5 ablation was substantially rescued by restoration of PDCD5WT but not YAF2-interacting defective PDCD5E4D nor TP53-interacting defective PDCD5E16D mutant. Our findings uncovered an apoptotic signaling cascade linking YAF2, PDCD5, and TP53 during genotoxic stress responses

    Epigenetic Changes of Serotonin Transporter in the Patients with Alcohol Dependence: Methylation of an Serotonin Transporter Promoter CpG Island

    Get PDF
    ObjectiveaaPsychiatric disorders such as depression, anxiety and alcohol dependence are associated with serotonin metabolism. We assessed the methylation level of the serotonin transporter (5-HTT) promoter region in control and alcohol dependent patients. MethodsaaTwenty seven male patients who met the Diagnostic and Statistical Manual of Mental Disorder IV (DSM-IV) criteria for alcohol dependence were compared with fifteen controls. Polymerase chain reaction (PCR) assays of bisulfate-modified DNA were designed to amplify a part of the CpG island in the 5HTT gene. Pyrosequencing was performed and the methylation level at seven CpG island sites was measured. ResultsaaWe found no differences in the methylation patterns of the serotonin transporter linked promoter region (5-HTTLPR) between alcohol-dependent and control subjects. ConclusionaaOur negative finding may be because 5-HTT epigenetic variation may not affect the expression for 5-HTT or there may be other methylation site critical for its expression. To find out more conclusive result, repeating the study in more methylation sites with a larger number of samples in a well-controlled setting is needed. Psychiatry Investig 2011;8:130-13
    corecore