127 research outputs found

    Bandwidth selection for smooth backfitting in additive models

    Full text link
    The smooth backfitting introduced by Mammen, Linton and Nielsen [Ann. Statist. 27 (1999) 1443-1490] is a promising technique to fit additive regression models and is known to achieve the oracle efficiency bound. In this paper, we propose and discuss three fully automated bandwidth selection methods for smooth backfitting in additive models. The first one is a penalized least squares approach which is based on higher-order stochastic expansions for the residual sums of squares of the smooth backfitting estimates. The other two are plug-in bandwidth selectors which rely on approximations of the average squared errors and whose utility is restricted to local linear fitting. The large sample properties of these bandwidth selection methods are given. Their finite sample properties are also compared through simulation experiments.Comment: Published at http://dx.doi.org/10.1214/009053605000000101 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A simple smooth backfitting method for additive models

    Full text link
    In this paper a new smooth backfitting estimate is proposed for additive regression models. The estimate has the simple structure of Nadaraya--Watson smooth backfitting but at the same time achieves the oracle property of local linear smooth backfitting. Each component is estimated with the same asymptotic accuracy as if the other components were known.Comment: Published at http://dx.doi.org/10.1214/009053606000000696 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Smooth backfitting in generalized additive models

    Full text link
    Generalized additive models have been popular among statisticians and data analysts in multivariate nonparametric regression with non-Gaussian responses including binary and count data. In this paper, a new likelihood approach for fitting generalized additive models is proposed. It aims to maximize a smoothed likelihood. The additive functions are estimated by solving a system of nonlinear integral equations. An iterative algorithm based on smooth backfitting is developed from the Newton--Kantorovich theorem. Asymptotic properties of the estimator and convergence of the algorithm are discussed. It is shown that our proposal based on local linear fit achieves the same bias and variance as the oracle estimator that uses knowledge of the other components. Numerical comparison with the recently proposed two-stage estimator [Ann. Statist. 32 (2004) 2412--2443] is also made.Comment: Published in at http://dx.doi.org/10.1214/009053607000000596 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Limit Distribution of Convex-Hull Estimators of Boundaries

    Get PDF
    Given n independent and identically distributed observations in a set G with an unknown function g, called a boundary or frontier, it is desired to estimate g from the observations. The problem has several important applications including classification and cluster analysis, and is closely related to edge estimation in image reconstruction. It is particularly important in econometrics. The convex-hull estimator of a boundary or frontier is very popular in econometrics, where it is a cornerstone of a method known as `data envelope analysis´ or DEA. In this paper we give a large sample approximation of the distribution of the convex-hull estimator in the general case where p>=1. We discuss ways of using the large sample approximation to correct the bias of the convex-hull and the DEA estimators and to construct confidence intervals for the true function. --Convex-hull,free disposal hull,frontier function,data envelope analysis,productivity analysis,rate of convergence

    Semi-parametric regression: Efficiency gains from modeling the nonparametric part

    Full text link
    It is widely admitted that structured nonparametric modeling that circumvents the curse of dimensionality is important in nonparametric estimation. In this paper we show that the same holds for semi-parametric estimation. We argue that estimation of the parametric component of a semi-parametric model can be improved essentially when more structure is put into the nonparametric part of the model. We illustrate this for the partially linear model, and investigate efficiency gains when the nonparametric part of the model has an additive structure. We present the semi-parametric Fisher information bound for estimating the parametric part of the partially linear additive model and provide semi-parametric efficient estimators for which we use a smooth backfitting technique to deal with the additive nonparametric part. We also present the finite sample performances of the proposed estimators and analyze Boston housing data as an illustration.Comment: Published in at http://dx.doi.org/10.3150/10-BEJ296 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Backfitting and smooth backfitting for additive quantile models

    Full text link
    In this paper, we study the ordinary backfitting and smooth backfitting as methods of fitting additive quantile models. We show that these backfitting quantile estimators are asymptotically equivalent to the corresponding backfitting estimators of the additive components in a specially-designed additive mean regression model. This implies that the theoretical properties of the backfitting quantile estimators are not unlike those of backfitting mean regression estimators. We also assess the finite sample properties of the two backfitting quantile estimators.Comment: Published in at http://dx.doi.org/10.1214/10-AOS808 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org). With Correction

    Asymptotic distribution of conical-hull estimators of directional edges

    Full text link
    Nonparametric data envelopment analysis (DEA) estimators have been widely applied in analysis of productive efficiency. Typically they are defined in terms of convex-hulls of the observed combinations of inputs×outputs\mathrm{inputs}\times\mathrm{outputs} in a sample of enterprises. The shape of the convex-hull relies on a hypothesis on the shape of the technology, defined as the boundary of the set of technically attainable points in the inputs×outputs\mathrm{inputs}\times\mathrm{outputs} space. So far, only the statistical properties of the smallest convex polyhedron enveloping the data points has been considered which corresponds to a situation where the technology presents variable returns-to-scale (VRS). This paper analyzes the case where the most common constant returns-to-scale (CRS) hypothesis is assumed. Here the DEA is defined as the smallest conical-hull with vertex at the origin enveloping the cloud of observed points. In this paper we determine the asymptotic properties of this estimator, showing that the rate of convergence is better than for the VRS estimator. We derive also its asymptotic sampling distribution with a practical way to simulate it. This allows to define a bias-corrected estimator and to build confidence intervals for the frontier. We compare in a simulated example the bias-corrected estimator with the original conical-hull estimator and show its superiority in terms of median squared error.Comment: Published in at http://dx.doi.org/10.1214/09-AOS746 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Local Likelihood Estimation of Truncated Regression and Its Partial Derivatives: Theory and Application

    Get PDF
    In this paper we propose a very flexible estimator in the context of truncated regression that does not require parametric assumptions. To do this, we adapt the theory of local maximum likelihood estimation. We provide the asymptotic results and illustrate the performance of our estimator on simulated and real data sets. Our estimator performs as good as the fully parametric estimator when the assumptions for the latter hold, but as expected, much better when they do not (provided that the curse of dimensionality problem is not the issue). Overall, our estimator exhibits a fair degree of robustness to various deviations from linearity in the regression equation and also to deviations from the specification of the error term. So the approach shall prove to be very useful in practical applications, where the parametric form of the regression or of the distribution is rarely known.Nonparametric Truncated Regression, Local Likelihood

    Flexible generalized varying coefficient regression models

    Full text link
    This paper studies a very flexible model that can be used widely to analyze the relation between a response and multiple covariates. The model is nonparametric, yet renders easy interpretation for the effects of the covariates. The model accommodates both continuous and discrete random variables for the response and covariates. It is quite flexible to cover the generalized varying coefficient models and the generalized additive models as special cases. Under a weak condition we give a general theorem that the problem of estimating the multivariate mean function is equivalent to that of estimating its univariate component functions. We discuss implications of the theorem for sieve and penalized least squares estimators, and then investigate the outcomes in full details for a kernel-type estimator. The kernel estimator is given as a solution of a system of nonlinear integral equations. We provide an iterative algorithm to solve the system of equations and discuss the theoretical properties of the estimator and the algorithm. Finally, we give simulation results.Comment: Published in at http://dx.doi.org/10.1214/12-AOS1026 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    New methods for bias correction at endpoints and boundaries

    No full text
    We suggest two new, translation-based methods for estimating and correcting for bias when estimating the edge of a distribution. The first uses an empirical translation applied to the argument of the kernel, in order to remove the main effects of the asymmetries that are inherent when constructing estimators at boundaries. Placing the translation inside the kernel is in marked contrast to traditional approaches, such as the use of high-order kernels, which are related to the jackknife and, in effect, apply the translation outside the kernel. Our approach has the advantage of producing bias estimators that, while enjoying a high order of accuracy, are guaranteed to respect the sign of bias. Our second method is a new bootstrap technique. It involves translating an initial boundary estimate toward the body of the dataset, constructing repeated boundary estimates from data that lie below the respective translations, and employing averages of the resulting empirical bias approximations to estimate the bias of the original estimator. The first of the two methods is most appropriate in univariate cases, and is studied there; the second approach may be used to bias-correct estimates of boundaries of multivariate distributions, and is explored in the bivariate case
    corecore