16 research outputs found

    Quiet Sun X-rays as Signature for New Particles

    Full text link
    We have studied published data from the Yohkoh solar X-ray mission, with the purpose of searching for signals from radiative decays of new, as yet undiscovered massive neutral particles. This search is based on the prediction that solar axions of the Kaluza-Klein type should result in the emission of X-rays from the Sun direction beyond the limb with a characteristic radial distribution. These X-rays should be observed more easily during periods of quiet Sun. An additional signature is the observed emission of hard X-rays by SMM, NEAR and RHESSI. The recent observation made by RHESSI of a continuous emission from the non-flaring Sun of X-rays in the 3 to ~15 keV range fits the generic axion scenario. This work also suggests new analyses of existing data, in order to exclude instrumental effects; it provides the rationale for targeted observations with present and upcoming (solar) X-ray telescopes, which can provide the final answer on the nature of the signals considered here. Such measurements become more promising during the forthcoming solar cycle minimum with an increased number of quiet Sun periods.Comment: 14 pages, 3 figures; to be published in ApJ. May 20 200

    Precise charged particle timing with the PICOSEC detector

    Get PDF
    The experimental requirements in near future accelerators (e.g. High Luminosity-LHC) has stimulated intense interestin development of detectors with high precision timing capabilities. With this as a goal, a new detection concept called PICOSEC,which is based to a ‚Äútwo-stage‚ÄĚ MicroMegas detector coupled to a Cherenkov radiator equipped with a photocathode has beendeveloped. Results obtained with this new detector yield a time resolution of 24 ps for 150 GeV muons and 76 ps for single pho-toelectrons. In this paper we will report on the performance of the PICOSEC in test beams, as well as simulation studies andmodelling of its timing characteristicsPeer reviewe

    FALSTAFF : a New Tool for Fission Fragment Characterization

    No full text
    Neutron for Science/SPIRAL2International audienceThe future Neutron For Science (NFS) facility to be installed at SPIRAL2 (Caen, France) will produce high intensity neutron beams from hundreds of keV up to 40 MeV. Taking advantage of this facility, data of particular interest to the nuclear community, in view of the development of fast reactor technology, will be measured. The development of an experimental setup called FALSTAFF for a full characterization of actinide fission fragments has been undertaken. Fission fragment isotopic yields and associated neutron multiplicities will be measured as a function of the neutron energy. Based on time-of-flight and residual energy technique, the setup will allow for the simultaneous measurement of the velocity and energy of the complementary fragments. The performance of the time-of-flight detectors of FALSTAFF will be presented and expected resolutions for fragment masses and neutron multiplicities, based on realistic simulations, will be shown

    MicroMegas-based detectors for time-of-flight measurements of neutron-induced reactions

    No full text
    MicroMegas detectors are versatile gaseous detectors which are used for ionizing particle detection. A MicroMegas detector consists of two adjacent gas-filled volumes. One volume acts as a drift region with an electric field operating in the ionization chamber regime, the second volume is the amplification region acting as a parallel-plate avalanche counter. The use of the microbulk technique allows the production of thin, radiation resistant, and low-mass detector with a highly variable gain. Such MicroMegas detectors have been developed and used in combination with neutron time-of-flight measurements for in-beam neutron-flux monitoring, fission and light-charged particle reaction cross section measurements, and for neutron-beam imaging. An overview of MicroMegas detectors for neutron detection and neutron reaction cross section measurements and related results and developments will be presented

    Indirect signatures for axion(-like) particles

    No full text
    Magnetic field dependent transient solar observations are suggestive for axion-photon oscillations with light axion(-like) particle involvement. Novel dark-moon measurements with the SMART X-ray detectors can be conclusive for radiatively decaying massive exotica like the generic solar Kaluza-Klein axions. Furthermore, the predicted intrinsic strong solar magnetic fields could be the reason of enhanced low energy axion production. Such an axion component could be the as yet unknown origin of the strong quiet Sun X-ray luminosity at energies below 1 keV. Solar axion telescopes should lower their threshold, aiming to copy processes that might occur near the solar surface, be it due to spontaneous or magnetically induced radiative decay of axion(-like) particles. This is motivated also by the recent claim of an axion-like particle detection by the laser experiment PVLAS.Comment: 9 pages, 2 Figures, TAUP2005 conf. proc. (extended version