103 research outputs found
Parameterized Algorithms for List K-Cycle
The classic K-Cycle problem asks if a graph G, with vertex set V(G), has a simple cycle containing all vertices of a given set K subseteq V(G). In terms of colored graphs, it can be rephrased as follows: Given a graph G, a set K subset of V(G) and an injective coloring c from K to {1,2,...,|K|}, decide if G has a simple cycle containing each color in {1,2,...,|K|} (once). Another problem widely known since the introduction of color coding is {Colorful Cycle}. Given a graph G and a coloring c from V(G) to {1,2,...,k} for some natural number k, it asks if G has a simple cycle of length k containing each color in {1,2,...,k} (once). We study a generalization of these problems: Given a graph G, a set K subset of V(G), a list-coloring L from K to 2^{{1,2,...,k^*}} for some natural number k^* and a parameter k, List K-Cycle asks if one can assign a color to each vertex in K so that G would have a simple cycle (of arbitrary length) containing exactly k vertices from K with distinct colors.
We design a randomized algorithm for List K-Cycle running in time 2^kn^{O(1)} on an -vertex graph, matching the best known running times of algorithms for both K-Cycle and Colorful Cycle. Moreover, unless the Set Cover Conjecture is false, our algorithm is essentially optimal. We also study a variant of List K-Cycle that generalizes the classic Hamiltonicity problem, where one specifies the size of a solution. Our results integrate three related algebraic approaches, introduced by Bjorklund, Husfeldt and Taslaman (SODA\u2712), Bjorklund, Kaski and Kowalik (STACS\u2713), and Bjorklund (FOCS\u2710)
Lossy Kernelization
In this paper we propose a new framework for analyzing the performance of
preprocessing algorithms. Our framework builds on the notion of kernelization
from parameterized complexity. However, as opposed to the original notion of
kernelization, our definitions combine well with approximation algorithms and
heuristics. The key new definition is that of a polynomial size
-approximate kernel. Loosely speaking, a polynomial size
-approximate kernel is a polynomial time pre-processing algorithm that
takes as input an instance to a parameterized problem, and outputs
another instance to the same problem, such that . Additionally, for every , a -approximate solution
to the pre-processed instance can be turned in polynomial time into a
-approximate solution to the original instance .
Our main technical contribution are -approximate kernels of
polynomial size for three problems, namely Connected Vertex Cover, Disjoint
Cycle Packing and Disjoint Factors. These problems are known not to admit any
polynomial size kernels unless . Our approximate
kernels simultaneously beat both the lower bounds on the (normal) kernel size,
and the hardness of approximation lower bounds for all three problems. On the
negative side we prove that Longest Path parameterized by the length of the
path and Set Cover parameterized by the universe size do not admit even an
-approximate kernel of polynomial size, for any , unless
. In order to prove this lower bound we need to combine
in a non-trivial way the techniques used for showing kernelization lower bounds
with the methods for showing hardness of approximationComment: 58 pages. Version 2 contain new results: PSAKS for Cycle Packing and
approximate kernel lower bounds for Set Cover and Hitting Set parameterized
by universe siz
Complexity of the Steiner Network Problem with Respect to the Number of Terminals
In the Directed Steiner Network problem we are given an arc-weighted digraph
, a set of terminals , and an (unweighted) directed
request graph with . Our task is to output a subgraph of the minimum cost such that there is a directed path from to in
for all .
It is known that the problem can be solved in time
[Feldman&Ruhl, SIAM J. Comput. 2006] and cannot be solved in time
even if is planar, unless Exponential-Time Hypothesis
(ETH) fails [Chitnis et al., SODA 2014]. However, as this reduction (and other
reductions showing hardness of the problem) only shows that the problem cannot
be solved in time unless ETH fails, there is a significant
gap in the complexity with respect to in the exponent.
We show that Directed Steiner Network is solvable in time , where is a constant depending solely on the
genus of and is a computable function. We complement this result by
showing that there is no algorithm for
any function for the problem on general graphs, unless ETH fails
Parameterized Algorithms on Perfect Graphs for deletion to -graphs
For fixed integers , a graph is called an {\em
-graph} if the vertex set can be partitioned into
independent sets and cliques. The class of graphs
generalizes -colourable graphs (when and hence not surprisingly,
determining whether a given graph is an -graph is \NP-hard even when
or in general graphs.
When and are part of the input, then the recognition problem is
NP-hard even if the input graph is a perfect graph (where the {\sc Chromatic
Number} problem is solvable in polynomial time). It is also known to be
fixed-parameter tractable (FPT) on perfect graphs when parameterized by and
. I.e. there is an f(r+\ell) \cdot n^{\Oh(1)} algorithm on perfect
graphs on vertices where is some (exponential) function of and
.
In this paper, we consider the parameterized complexity of the following
problem, which we call {\sc Vertex Partization}. Given a perfect graph and
positive integers decide whether there exists a set of size at most such that the deletion of from results in an
-graph. We obtain the following results: \begin{enumerate} \item {\sc
Vertex Partization} on perfect graphs is FPT when parameterized by .
\item The problem does not admit any polynomial sized kernel when parameterized
by . In other words, in polynomial time, the input graph can not be
compressed to an equivalent instance of size polynomial in . In fact,
our result holds even when .
\item When are universal constants, then {\sc Vertex Partization} on
perfect graphs, parameterized by , has a polynomial sized kernel.
\end{enumerate
Refined Complexity of PCA with Outliers
Principal component analysis (PCA) is one of the most fundamental procedures
in exploratory data analysis and is the basic step in applications ranging from
quantitative finance and bioinformatics to image analysis and neuroscience.
However, it is well-documented that the applicability of PCA in many real
scenarios could be constrained by an "immune deficiency" to outliers such as
corrupted observations. We consider the following algorithmic question about
the PCA with outliers. For a set of points in , how to
learn a subset of points, say 1% of the total number of points, such that the
remaining part of the points is best fit into some unknown -dimensional
subspace? We provide a rigorous algorithmic analysis of the problem. We show
that the problem is solvable in time . In particular, for constant
dimension the problem is solvable in polynomial time. We complement the
algorithmic result by the lower bound, showing that unless Exponential Time
Hypothesis fails, in time , for any function of , it is
impossible not only to solve the problem exactly but even to approximate it
within a constant factor.Comment: To be presented at ICML 201
Covering Small Independent Sets and Separators with Applications to Parameterized Algorithms
We present two new combinatorial tools for the design of parameterized
algorithms. The first is a simple linear time randomized algorithm that given
as input a -degenerate graph and an integer , outputs an independent
set , such that for every independent set in of size at most ,
the probability that is a subset of is at least .The second is a new (deterministic) polynomial
time graph sparsification procedure that given a graph , a set of terminal pairs and an
integer , returns an induced subgraph of that maintains all
the inclusion minimal multicuts of of size at most , and does not
contain any -vertex connected set of size . In
particular, excludes a clique of size as a
topological minor. Put together, our new tools yield new randomized fixed
parameter tractable (FPT) algorithms for Stable - Separator, Stable Odd
Cycle Transversal and Stable Multicut on general graphs, and for Stable
Directed Feedback Vertex Set on -degenerate graphs, resolving two problems
left open by Marx et al. [ACM Transactions on Algorithms, 2013]. All of our
algorithms can be derandomized at the cost of a small overhead in the running
time.Comment: 35 page
- …