2,464 research outputs found
The Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS) ? Part 1: Model description and evaluation
International audienceWe introduce the Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS). CATT-BRAMS is an on-line transport model fully consistent with the simulated atmospheric dynamics. Emission sources from biomass burning and urban-industrial-vehicular activities for trace gases and aerosol particles are obtained from several published datasets and remote sensing information. The tracer and aerosol mass concentration prognostic includes the effects of sub-grid scale turbulence in the planetary boundary layer, convective transport by shallow and deep moist convection, wet and dry deposition, and plume rise associated with vegetation fires in addition to the grid scale transport. The radiation parameterization takes into account the interaction between aerosol particles and short and long wave radiation. The atmospheric model BRAMS is based on the Regional Atmospheric Modeling System (RAMS), with several improvements associated with cumulus convection representation, soil moisture initialization and surface scheme tuned for the tropics, among others. In this paper the CATT-BRAMS model is used to simulate carbon monoxide and particulate material (PM2.5) surface fluxes and atmospheric transport during the 2002 LBA field campaigns, conducted during the transition from the dry to wet season in the southwest Amazon Basin. Model evaluation is addressed with comparisons between model results and near surface, radiosonde and airborne measurements performed during the field campaign, as well as remote sensing derived products. We show the matching of emissions strengths to observed carbon monoxide in the LBA campaign. A relatively good comparison to the MOPITT data, in spite of the fact that MOPITT a priori assumptions imply several difficulties, is also obtained
The Extreme Energy Events HECR array: status and perspectives
The Extreme Energy Events Project is a synchronous sparse array of 52
tracking detectors for studying High Energy Cosmic Rays (HECR) and Cosmic
Rays-related phenomena. The observatory is also meant to address Long Distance
Correlation (LDC) phenomena: the network is deployed over a broad area covering
10 degrees in latitude and 11 in longitude. An overview of a set of preliminary
results is given, extending from the study of local muon flux dependance on
solar activity to the investigation of the upward-going component of muon flux
traversing the EEE stations; from the search for anisotropies at the sub-TeV
scale to the hints for observations of km-scale Extensive Air Shower (EAS).Comment: XXV ECRS 2016 Proceedings - eConf C16-09-04.
New Eco-gas mixtures for the Extreme Energy Events MRPCs: results and plans
The Extreme Energy Events observatory is an extended muon telescope array,
covering more than 10 degrees both in latitude and longitude. Its 59 muon
telescopes are equipped with tracking detectors based on Multigap Resistive
Plate Chamber technology with time resolution of the order of a few hundred
picoseconds. The recent restrictions on greenhouse gases demand studies for new
gas mixtures in compliance with the relative requirements. Tetrafluoropropene
is one of the candidates for tetrafluoroethane substitution, since it is
characterized by a Global Warming Power around 300 times lower than the gas
mixtures used up to now. Several mixtures have been tested, measuring
efficiency curves, charge distributions, streamer fractions and time
resolutions. Results are presented for the whole set of mixtures and operating
conditions, %. A set of tests on a real EEE telescope, with cosmic muons, are
being performed at the CERN-01 EEE telescope. The tests are focusing on
identifying a mixture with good performance at the low rates typical of an EEE
telescope.Comment: 8 pages, 6 figures, proceedings for the "XIV Workshop on Resistive
Plate Chambers and Related Detectors" (19-23 February 2018), Puerto Vallarta,
Jalisco State, Mexic
The future of Cybersecurity in Italy: Strategic focus area
This volume has been created as a continuation of the previous one, with the aim of outlining a set of focus areas and actions that the Italian Nation research community considers essential. The book touches many aspects of cyber security, ranging from the definition of the infrastructure and controls needed to organize cyberdefence to the actions and technologies to be developed to be better protected, from the identification of the main technologies to be defended to the proposal of a set of horizontal actions for training, awareness raising, and risk management
A simulation tool for MRPC telescopes of the EEE project
The Extreme Energy Events (EEE) Project is mainly devoted to the study of the
secondary cosmic ray radiation by using muon tracker telescopes made of three
Multigap Resistive Plate Chambers (MRPC) each. The experiment consists of a
telescope network mainly distributed across Italy, hosted in different building
structures pertaining to high schools, universities and research centers.
Therefore, the possibility to take into account the effects of these structures
on collected data is important for the large physics programme of the project.
A simulation tool, based on GEANT4 and using GEMC framework, has been
implemented to take into account the muon interaction with EEE telescopes and
to estimate the effects on data of the structures surrounding the experimental
apparata.A dedicated event generator producing realistic muon distributions,
detailed geometry and microscopic behavior of MRPCs have been included to
produce experimental-like data. The comparison between simulated and
experimental data, and the estimation of detector resolutions is here presented
and discussed
Detection of 16 Gamma-Ray Pulsars Through Blind Frequency Searches Using the Fermi LAT
Pulsars are rapidly-rotating, highly-magnetized neutron stars emitting
radiation across the electromagnetic spectrum. Although there are more than
1800 known radio pulsars, until recently, only seven were observed to pulse in
gamma rays and these were all discovered at other wavelengths. The Fermi Large
Area Telescope makes it possible to pinpoint neutron stars through their
gamma-ray pulsations. We report the detection of 16 gamma-ray pulsars in blind
frequency searches using the LAT. Most of these pulsars are coincident with
previously unidentified gamma-ray sources, and many are associated with
supernova remnants. Direct detection of gamma-ray pulsars enables studies of
emission mechanisms, population statistics and the energetics of pulsar wind
nebulae and supernova remnants.Comment: Corresponding authors: Michael Dormody, Paul S. Ray, Pablo M. Saz
Parkinson, Marcus Ziegle
Fermi observations of high-energy gamma-ray emission from GRB 090217A
The Fermi observatory is advancing our knowledge of Gamma-Ray Bursts (GRBs)
through pioneering observations at high energies, covering more than 7 decades
in energy with the two on-board detectors, the Large Area Telescope (LAT) and
the Gamma-ray Burst Monitor (GBM). Here we report on the observation of the
long GRB 090217A which triggered the GBM and has been detected by the LAT with
a significance greater than 9 sigma. We present the GBM and LAT observations
and on-ground analyses, including the time-resolved spectra and the study of
the temporal profile from 8 keV up to 1 GeV. All spectra are well reproduced by
a Band model. We compare these observations to the first two LAT-detected, long
bursts GRB 080825C and GRB 080916C. These bursts were found to have
time-dependent spectra and exhibited a delayed onset of the high-energy
emission, which are not observed in the case of GRB 090217A. We discuss some
theoretical implications for the high-energy emission of GRBs.Comment: 17 pages, 4 figures. Contact Authors: Fred, Piron; Sara, Cutini;
Andreas, von Kienli
Fermi observations of TeV-selected AGN
We report on observations of TeV-selected AGN made during the first 5.5
months of observations with the Large Area Telescope (LAT) on-board the Fermi
Gamma-ray Space Telescope (Fermi). In total, 96 AGN were selected for study,
each being either (i) a source detected at TeV energies (28 sources) or (ii) an
object that has been studied with TeV instruments and for which an upper-limit
has been reported (68 objects). The Fermi observations show clear detections of
38 of these TeV-selected objects, of which 21 are joint GeV-TeV sources and 29
were not in the third EGRET catalog. For each of the 38 Fermi-detected sources,
spectra and light curves are presented. Most can be described with a power law
of spectral index harder than 2.0, with a spectral break generally required to
accommodate the TeV measurements. Based on an extrapolation of the Fermi
spectrum, we identify sources, not previously detected at TeV energies, which
are promising targets for TeV instruments. Evidence for systematic evolution of
the -ray spectrum with redshift is presented and discussed in the
context of interaction with the EBL.Comment: 51 pages, 6 figures, accepted for The Astronomical Journa
Constraints on dark matter models from a Fermi LAT search for high-energy cosmic-ray electrons from the Sun
During its first year of data taking, the Large Area Telescope (LAT) onboard
the Fermi Gamma-Ray Space Telescope has collected a large sample of high-energy
cosmic-ray electrons and positrons (CREs). We present the results of a
directional analysis of the CRE events, in which we searched for a flux excess
correlated with the direction of the Sun. Two different and complementary
analysis approaches were implemented, and neither yielded evidence of a
significant CRE flux excess from the Sun. We derive upper limits on the CRE
flux from the Sun's direction, and use these bounds to constrain two classes of
dark matter models which predict a solar CRE flux: (1) models in which dark
matter annihilates to CREs via a light intermediate state, and (2) inelastic
dark matter models in which dark matter annihilates to CREs.Comment: 18 pages, 8 figures, accepted for publication in Physical Review D -
contact authors: Francesco Loparco ([email protected]), M. Nicola Mazziotta
([email protected]) and Jennifer Siegal-Gaskins ([email protected]
Fermi Large Area Telescope Observations of the Cosmic-Ray Induced gamma-ray Emission of the Earth's Atmosphere
We report on measurements of the cosmic-ray induced gamma-ray emission of
Earth's atmosphere by the Large Area Telescope onboard the Fermi Gamma-ray
Space Telescope. The LAT has observed the Earth during its commissioning phase
and with a dedicated Earth-limb following observation in September 2008. These
measurements yielded 6.4 x 10^6 photons with energies >100MeV and ~250hours
total livetime for the highest quality data selection. This allows the study of
the spatial and spectral distributions of these photons with unprecedented
detail. The spectrum of the emission - often referred to as Earth albedo
gamma-ray emission - has a power-law shape up to 500 GeV with spectral index
Gamma = 2.79+-0.06.Comment: Accepted for publication in PR
- …