24 research outputs found
DINeR: Database for Insect Neuropeptide Research
Neuropeptides are responsible for regulating a variety of functions, including development, metabolism, water and ion homeostasis, and as neuromodulators in circuits of the central nervous system. Numerous neuropeptides have been identified and characterized. However, both discovery and functional characterization of neuropeptides across the massive Class Insecta has been sporadic. To leverage advances in post-genomic technologies for this rapidly growing field, insect neuroendocrinology requires a consolidated, comprehensive and standardised resource for managing neuropeptide information.
The Database for Insect Neuropeptide Research (DINeR) is a web-based database-application used for search and retrieval of neuropeptide information of various insect species detailing their isoform sequences, physiological functionality and images of their receptor-binding sites, in an intuitive, accessible and user-friendly format. The curated data includes representatives of 50 well described neuropeptide families from over 400 different insect species. Approximately 4700 FASTA formatted, neuropeptide isoform amino acid sequences and over 200 records of physiological functionality have been recorded based on published literature. Also available are images of neuropeptide receptor locations. In addition, the data include comprehensive summaries for each neuropeptide family, including their function, location, known functionality, as well as cladograms, sequence alignments and logos covering most insect orders. Moreover, we have adopted a standardized nomenclature to address inconsistent classification of neuropeptides
Coordinated RNA-Seq and peptidomics identify neuropeptides and G-protein coupled receptors (GPCRs) in the large pine weevil Hylobius abietis, a major forestry pest
Hylobius abietis (Linnaeus), or large pine weevil (Coleoptera, Curculionidae), is a pest of European coniferous forests. In order to gain understanding of the functional physiology of this species, we have assembled a de novo transcriptome of H. abietis, from sequence data obtained by Next Generation Sequencing. In particular, we have identified genes encoding neuropeptides, peptide hormones and their putative G-protein coupled receptors (GPCRs) to gain insights into neuropeptide-modulated processes. The transcriptome was assembled de novo from pooled paired-end, sequence reads obtained from RNA from whole adults, gut and central nervous system tissue samples. Data analysis was performed on the transcripts obtained from the assembly including, annotation, gene ontology and functional assignment as well as transcriptome completeness assessment and KEGG pathway analysis. Pipelines were created using Bioinformatics tools and techniques for prediction and identification of neuropeptides and neuropeptide receptors. Peptidomic analysis was also carried out using a combination of MALDI-TOF as well as Q-Exactive Orbitrap mass spectrometry to confirm the identified neuropeptide. 41 putative neuropeptide families were identified in H. abietis, including Adipokinetic hormone (AKH), CAPA and DH31. Neuropeptide F, which has not been yet identified in the model beetle T. castaneum, was identified. Additionally, 24 putative neuropeptide and 9 leucine-rich repeat containing G protein coupled receptor-encoding transcripts were determined using both alignment as well as non-alignment methods. This information, submitted to the NCBI sequence read archive repository (SRA accession: SRP133355), can now be used to inform understanding of neuropeptide-modulated physiology and behaviour in H. abietis; and to develop specific neuropeptide-based tools for H. abietis control
FlyAtlas 2:a new version of the Drosophila melanogaster expression atlas with RNA-Seq, miRNA-Seq and sex-specific data
FlyAtlas 2 (www.flyatlas2.org) is part successor, part complement to the FlyAtlas database and web application for studying the expression of the genes of Drosophila melanogaster in different tissues of adults and larvae. Although generated in the same lab with the same fly line raised on the same diet as FlyAtlas, the FlyAtlas2 resource employs a completely new set of expression data based on RNA-Seq, rather than microarray analysis, and so it allows the user to obtain information for the expression of different transcripts of a gene. Furthermore, the data for somatic tissues are now available for both male and female adult flies, allowing studies of sexual dimorphism. Gene coverage has been extended by the inclusion of microRNAs and many of the RNA genes included in Release 6 of the Drosophila reference genome. The web interface has been modified to accommodate the extra data, but at the same time has been adapted for viewing on small mobile devices. Users also have access to the RNA-Seq reads displayed alongside the annotated Drosophila genome in the (external) UCSC browser, and are able to link out to the previous FlyAtlas resource to compare the data obtained by RNA-Seq with that obtained using microarrays
Hydrodynamics of Liquid-Liquid Flows in Micro Channels and Its Influence on Transport Properties: A Review
Hydrodynamics plays a major role in transport of heat and mass transfer in microchannels. This includes flow patterns and flow regimes in which the micro-channels are operated. The flow patterns have a major impact the transport properties. Another important aspect is the pressure drop in micro-channels. In the present review, the experimental and Computational Fluid Dynamics (CFD) studies covering all the above aspects have been covered. The effect of geometrical parameters like shape of channel, channel size, material of construction of channels; operating parameters like flow velocity, flow ratio and fluid properties have been presented and analyzed. Experimental and analytical work of different pressure drop models has also been presented. All the literature related to influence of flow patterns on transport properties like volumetric mass transfer coefficients (VMTC) and heat transfer coefficients (HTC) have been presented and analyzed. It is found that most works in Liquid-Liquid Extraction (LLE) systems have been carried out in slug flow and T-junctions. Models for coupled systems of flow and mass transfer have been presented and works carried out for different coupled systems have been listed. CFD simulations match experimental results within 20% deviations in quantitative and qualitative predictions of flow phenomena for most research articles referred in this review. There is a disparity in prediction of a generalized regime map and a generalized regime map for prediction of flow patterns for various systems would need the help of Artificial Intelligence
Modelling and experimental investigation into cavity dynamics and cavitational yield: influence of dual frequency ultrasound sources
Modelling of a dual frequency ultrasonic reactor has been carried out to understand the effect of introducing a second wave on the cavity dynamics as compared to a single sound wave. The effect of the second wave of same and/or different frequency on the chemical yields has also been investigated experimentally. The introduction of a second sound wave results in better distribution of the cavitational activity in the reactor resulting in uniform yields, minimising the formation of standing waves and more effective utilisation of the reactant volume and dissipated sound energy. Also the energy efficiency of the dual frequency sound wave system is twice than that obtained for the single sound wave. The modelling studies indicate that the introduction of the second sound wave should be without any change in frequency with respect to the first wave in order to obtain maximum cavitational effects and hence resulting in higher chemical yields
Kinetics of p-nitrophenol degradation: effect of reaction conditions and cavitational parameters for a multiple frequency system
In order to assess the ultrasound dual frequency effects, sonochemical degradation of p-nitrophenol (p-NP) in an aqueous solution has been carried out with ultrasound at three operating frequencies, i.e., at 25, 40 kHz each independently, and the combination of two frequencies (25+40 kHz) simultaneously. Based on the rates of degradation, a kinetic study has been performed which leads to the evaluation of apparent kinetic rate constants for the degradation of p-NP. The influence of various parameters including initial solution pH, bulk solution temperature, on the degradation of p-NP was studied for these three frequency modes (25, 40 and 25+40 kHz) in order to investigate the temporal behaviour of this reaction, especially when it was operated in combined mode (25+40 kHz). The energy efficiency in the case of dual frequency mode is much better than single frequency modes. Modelling and cavity dynamics simulations have also been carried out to explain the observed effects. During combined mode operation, an improvement in the rate of degradation has been observed. The variation in the rate constants has been explained based on the difference in the acoustic pressure field in different systems including ultrasonic bath and dual frequency processor
Intensification of esterification of acids for synthesis of biodiesel using acoustic and hydrodynamic cavitation
Cavitation results in conditions of turbulence and liquid circulation in the reactor which can aid in eliminating mass transfer resistances. The present work illustrates the use of cavitation for intensification of biodiesel synthesis (esterification) reaction, which is mass transfer limited reaction considering the immiscible nature of the reactants, i.e., fatty acids and alcohol. Esterification of fatty acid (FA) odour cut (C<SUB>8</SUB>-C<SUB>10</SUB>) with methanol in the presence of concentrated H<SUB>2</SUB>SO<SUB>4</SUB> as a catalyst has been studied in hydrodynamic cavitation reactor as well as in the sonochemical reactor. The different reaction operating parameters such as molar ratio of acid to alcohol, catalyst quantity have been optimized under acoustic as well as hydrodynamic cavitating conditions in addition to the optimization of the geometry of the orifice plate in the case of hydrodynamic cavitation reactors. Few experiments have also been carried out with other acid (lower and higher)/methanol combination viz. caprylic acid and capric acids with methanol with an aim of investigating the efficacy of cavitation for giving the desired yields and also to quantify the degree of process intensification that can be achieved using the same. It has been observed that ambient operating conditions of temperature and pressure and reaction times of <3 h, for all the different combinations of acid (lower and higher)/methanol studied in the present work, was sufficient for giving >90% conversion (mol%). This clearly establishes the efficacy of cavitation as an excellent way to achieve process intensification of the biodiesel synthesis process
Evolutionary trends of neuropeptide signaling in beetles : a comparative analysis of Coleopteran transcriptomic and genomic data
Insects employ neuropeptides to regulate their growth & development, behaviour, metabolism and their internal milieu. At least 50 neuropeptides are known to date, with some ancestral to the insects and others more specific to particular taxa. In order to understand the evolution and essentiality of neuropeptides, we data mined publicly available high quality genomic or transcriptomic data for 31 species of the largest insect Order, the Coleoptera, chosen to represent the superfamilies' of the Adephaga and Polyphaga. The resulting neuropeptide distributions were compared against the habitats, lifestyle and other parameters. Around half of the neuropeptide families were represented across the Coleoptera, suggesting essentiality or at least continuing utility. However, the remaining families showed patterns of loss that did not correlate with any obvious life history parameter, suggesting that these neuropeptides are no longer required for the Coleopteran lifestyle. This may perhaps indicate a decreasing reliance on neuropeptide signaling in insects
A novel method to improve the efficiency of a cooking device via thermal insulation
We propose a method of finding the transient temperature variation in an insulated cooking device. We also report a means of optimising the thickness of insulation. The cooking device is a double walled cylindrical vessel with spacing of 5–20 mm between the vertical walls (width) and spacing of 560 or 870 mm between top and bottom surfaces (height). The height to width ratio (H/L) is between 28 and 174 and Rayleigh number (Ra) is between 907 and 2.61 × 105. First, an energy balance for the cooking device is established. A correlation is developed to predict the heat transfer coefficient (HTC) as a function of Ra and H/L. The method developed for finding the transient variation in temperature has been tested on two cooking device volumes: 120 and 700 lit. Using the optimised parameters, a reduction in heat loss of 22% and 30%, respectively, is observed
Mapping of sonochemical reactors: review, analysis, and experimental verification
The erratic behavior of cavitational activity exhibited in a sonochemical reactor poses a serious problem in its design and scale-up. Several previous studies in the past dealt with mapping of sonochemical reactors, which have been critically analyzed and recommended for efficient scale-up strategies. There have been no efforts to link the primary effects (local pressure field) of ultrasound activity with the observed secondary effects (such as chemical reaction). In this work an ultrasonic horn (standard immersion-type reactor), and an ultrasonic bath (rectangular geometry with transducers located at the bottom in triangular pitch) reactors were mapped with the help of local pressure measurement (using a hydrophone), and liberated iodine was estimated using the Weissler reaction, and a quantitative relationship was established between the two. In estimating chemical reaction rates, the effect of microscopic variation in the type of microreactor used (test tube in this case) on the extent of degradation was also investigated. Measured local pressure pulses were used in theoretical simulations of bubble dynamics equations to check the type of cavitation taking place locally, and to estimate the possible collapse of the pressure pulse in terms of the maximum bubble size reached during the cavitation phenomena. A relationship also was established between observed iodine liberation rates and the maximum bubble size reached. The engineers can easily use these unique relationships in an efficient design, since the secondary effect can be directly quantified