3 research outputs found

    Surfactant-Assisted Synthesis of High Energy {010} Facets Beneficial to Li-Ion Transport Kinetics with Layered LiNi<sub>0.6</sub>Co<sub>0.2</sub>Mn<sub>0.2</sub>O<sub>2</sub>

    No full text
    High energy {010} facets are favorable for Li<sup>+</sup> transport in a layered Ni-rich LiNi<sub>0.6</sub>Co<sub>0.2</sub>Mn<sub>0.2</sub>O<sub>2</sub> cathode through two-dimensional channels that are perpendicular to the <i>c</i> axis. However, those planes can hardly be maintained during the synthesis of layered cathodes. Therefore, we provide a strategy to use appropriate surface active agents which can alter the surface free energy by reducing surface tension directly. Here, a novel self-assembled 3D flower-like hierarchical LiNi<sub>0.6</sub>Co<sub>0.2</sub>Mn<sub>0.2</sub>O<sub>2</sub> is formed with the help of sodium dodecyl sulfate (SDS), and those high energy facets are preserved. Due to the unique surface architectures which would lead to the fast ion transport kinetics as current expands to 100 times (from 0.1 to 10 C), the capacity decay only about 23.4%. Furthermore, full cells assembled against Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> are constructed with a capacity retention of 80.61% at 1 C charge/discharge. This study could show a promising material model for the preferred orientation active planes and higher Li<sup>+</sup> transport kinetic

    Table1_Evaluation of reference genes for quantitative expression analysis in Mylabris sibirica (Coleoptera, Meloidae).docx

    No full text
    Mylabris sibirica is a hypermetamorphic insect whose adults feed on oilseed rape. However, due to a shortage of effective and appropriate endogenous references, studies on molecular functional genes in Mylabris sibirica, have been tremendously limited. In this study, ten internal reference genes (ACT, ARF1, AK, EF1α, GAPDH, α-TUB, RPL6, RPL13, RPS3 and RPS18) were tested and assessed under four selected treatments including adult ages, adult tissues, temperatures, and sex by RT-qPCR based on five methods (Ct value, geNorm, NormFinder, BestKeeper and RefFinder). Our findings showed that RPL6 and RPL13 were the most optimal internal reference gene combination for gene expression during various adult ages and under diverse temperatures; The combination of RPL6 and RPS18 was recommended to test gene transcription levels under different adult tissues. AK and RPL6 were the best reference genes in male and female adults. RPL6 and RPL13 were the most appropriate reference gene pair to estimate gene expression levels under four different tested backgrounds. The relative transcript levels of a uridine diphosphate (UDP)-N-acetylglucosamine-pyrophosphorylase (MsUAP), varied greatly according to normalization with the two most- and least-suited reference genes. This study will lay the basis for further molecular physiology and biochemistry studies in M. sibirica, such as development, reproduction, sex differentiation, cold and heat resistance.</p

    Aldehyde Oxidase Mediated Metabolism in Drug-like Molecules: A Combined Computational and Experimental Study

    No full text
    Aldehyde oxidase (AOX) is an important drug-metabolizing enzyme. However, the current in vitro models for evaluating AOX metabolism are sometimes misleading, and preclinical animal models generally fail to predict human AOX-mediated metabolism. In this study, we report a combined computational and experimental investigation of drug-like molecules that are potential aldehyde oxidase substrates, of which multiple sites of metabolism (SOMs) mediated by AOX and their preferences for the reaction can be unambiguously identified. In addition, the proposed strategy was used to evaluate the metabolism of newly designed c-Met inhibitors, and a success switch-off of AOX metabolism was observed. Overall, this study provide useful information to guide lead optimization and drug discovery based on AOX-mediated metabolism
    corecore