134 research outputs found

    Draft genome sequence of Frankia sp. strain DC12, an atypical, noninfective, ineffective isolate from Datisca cannabina

    Get PDF
    Frankia sp. strain DC12, isolated from root nodules of Datisca cannabina, is a member of the fourth lineage of Frankia, which is unable to reinfect actinorhizal plants. Here, we report its 6.88-Mbp high-quality draft genome sequence, with a G+C content of 71.92% and 5,858 candidate protein-coding genes

    Microbiomes of Velloziaceae from phosphorus-impoverished soils of the campos rupestres, a biodiversity hotspot

    Get PDF
    The rocky, seasonally-dry and nutrient-impoverished soils of the Brazilian campos rupestres impose severe growth-limiting conditions on plants. Species of a dominant plant family, Velloziaceae, are highly specialized to low-nutrient conditions and seasonal water availability of this environment, where phosphorus (P) is the key limiting nutrient. Despite plant-microbe associations playing critical roles in stressful ecosystems, the contribution of these interactions in the campos rupestres remains poorly studied. Here we present the first microbiome data of Velloziaceae spp. thriving in contrasting substrates of campos rupestres. We assessed the microbiomes of Vellozia epidendroides, which occupies shallow patches of soil, and Barbacenia macrantha, growing on exposed rocks. The prokaryotic and fungal profiles were assessed by rRNA barcode sequencing of epiphytic and endophytic compartments of roots, stems, leaves and surrounding soil/rocks. We also generated root and substrate (rock/soil)-associated metagenomes of each plant species. We foresee that these data will contribute to decipher how the microbiome contributes to plant functioning in the campos rupestres, and to unravel new strategies for improved crop productivity in stressful environments6COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP88881.068071/2014-012016/23218-0Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [2016/23218-0]; U.S. Department of Energy Joint Genome Institute (DOE-JGI)United States Department of Energy (DOE) [CSP 503222]; Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)CAPES [88881.068071/2014-01]; FAPESPFundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [2018/04240-0]; CAPESCAPES; Office of Science of the U.S. Department of EnergyUnited States Department of Energy (DOE) [DE-AC02-05CH11231

    IMG/PR: a database of plasmids from genomes and metagenomes with rich annotations and metadata.

    Get PDF
    Plasmids are mobile genetic elements found in many clades of Archaea and Bacteria. They drive horizontal gene transfer, impacting ecological and evolutionary processes within microbial communities, and hold substantial importance in human health and biotechnology. To support plasmid research and provide scientists with data of an unprecedented diversity of plasmid sequences, we introduce the IMG/PR database, a new resource encompassing 699 973 plasmid sequences derived from genomes, metagenomes and metatranscriptomes. IMG/PR is the first database to provide data of plasmid that were systematically identified from diverse microbiome samples. IMG/PR plasmids are associated with rich metadata that includes geographical and ecosystem information, host taxonomy, similarity to other plasmids, functional annotation, presence of genes involved in conjugation and antibiotic resistance. The database offers diverse methods for exploring its extensive plasmid collection, enabling users to navigate plasmids through metadata-centric queries, plasmid comparisons and BLAST searches. The web interface for IMG/PR is accessible at https://img.jgi.doe.gov/pr. Plasmid metadata and sequences can be downloaded from https://genome.jgi.doe.gov/portal/IMG_PR

    Genomics, Exometabolomics, and Metabolic Probing Reveal Conserved Proteolytic Metabolism of Thermoflexus hugenholtzii and Three Candidate Species From China and Japan

    Get PDF
    Thermoflexus hugenholtzii JAD2 , the only cultured representative of the Chloroflexota order Thermoflexales, is abundant in Great Boiling Spring (GBS), NV, United States, and close relatives inhabit geothermal systems globally. However, no defined medium exists for T. hugenholtzii JAD2 and no single carbon source is known to support its growth, leaving key knowledge gaps in its metabolism and nutritional needs. Here, we report comparative genomic analysis of the draft genome of T. hugenholtzii JAD2 and eight closely related metagenome-assembled genomes (MAGs) from geothermal sites in China, Japan, and the United States, representing “Candidatus Thermoflexus japonica,” “Candidatus Thermoflexus tengchongensis,” and “Candidatus Thermoflexus sinensis.” Genomics was integrated with targeted exometabolomics and C metabolic probing of T. hugenholtzii. The Thermoflexus genomes each code for complete central carbon metabolic pathways and an unusually high abundance and diversity of peptidases, particularly Metallo- and Serine peptidase families, along with ABC transporters for peptides and some amino acids. The T. hugenholtzii JAD2 exometabolome provided evidence of extracellular proteolytic activity based on the accumulation of free amino acids. However, several neutral and polar amino acids appear not to be utilized, based on their accumulation in the medium and the lack of annotated transporters. Adenine and adenosine were scavenged, and thymine and nicotinic acid were released, suggesting interdependency with other organisms in situ. Metabolic probing of T. hugenholtzii JAD2 using C-labeled compounds provided evidence of oxidation of glucose, pyruvate, cysteine, and citrate, and functioning glycolytic, tricarboxylic acid (TCA), and oxidative pentose-phosphate pathways (PPPs). However, differential use of position-specific C-labeled compounds showed that glycolysis and the TCA cycle were uncoupled. Thus, despite the high abundance of Thermoflexus in sediments of some geothermal systems, they appear to be highly focused on chemoorganotrophy, particularly protein degradation, and may interact extensively with other microorganisms in situ. T T T 13 T T 13 1

    The biogeographic differentiation of algal microbiomes in the upper ocean from pole to pole

    Get PDF
    Eukaryotic phytoplankton are responsible for at least 20% of annual global carbon fixation. Their diversity and activity are shaped by interactions with prokaryotes as part of complex microbiomes. Although differences in their local species diversity have been estimated, we still have a limited understanding of environmental conditions responsible for compositional differences between local species communities on a large scale from pole to pole. Here, we show, based on pole-to-pole phytoplankton metatranscriptomes and microbial rDNA sequencing, that environmental differences between polar and non-polar upper oceans most strongly impact the large-scale spatial pattern of biodiversity and gene activity in algal microbiomes. The geographic differentiation of co-occurring microbes in algal microbiomes can be well explained by the latitudinal temperature gradient and associated break points in their beta diversity, with an average breakpoint at 14 °C ± 4.3, separating cold and warm upper oceans. As global warming impacts upper ocean temperatures, we project that break points of beta diversity move markedly pole-wards. Hence, abrupt regime shifts in algal microbiomes could be caused by anthropogenic climate change

    Multiomics in the central Arctic Ocean for benchmarking biodiversity change

    Get PDF
    Multiomics approaches need to be applied in the central Arctic Ocean to benchmark biodiversity change and to identify novel species and their genes. As part of MOSAiC, EcoOmics will therefore be essential for conservation and sustainable bioprospecting in one of the least explored ecosystems on Earth

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore