36 research outputs found

    Ordered mesoporous carbon-carbon nanotube nanocomposites as highly conductive and durable cathode catalyst supports for polymer electrolyte fuel cells

    Get PDF
    Ordered mesoporous carbon-carbon nanotube (OMC-CNT) nanocomposites were prepared and used as catalyst supports for polymer electrolyte fuel cells. The OMC-CNT composites were synthesized via a nanocasting method that used ordered mesoporous silica as a template and Ni-phthalocyanine as a carbon source. For comparison, sucrose and phthalocyanine were used to generate two other OMCs, OMC(Suc) and OMC(Pc), respectively. All three carbons exhibited hexagonally ordered mesostructures and uniform mesopores. Among the three carbons the OMC-CNT nanocomposites showed the highest electrical conductivity, which was due to the nature of their graphitic framework as well as their lower interfacial resistance. The three carbons were then used as fuel cell catalyst supports. It was found that highly dispersed Pt nanoparticles (ca. similar to 1.5 nm in size) could be dispersed on the OMCs via a simple impregnation-reduction method. The activity and kinetics of the oxygen reduction reaction (ORR), measured by the rotating ring-disk electrode technique revealed that the ORR over the Pt/OMC catalysts followed a four-electron pathway. Among the three Pt/OMC catalysts, the Pt/OMC-CNT catalyst resulted in the highest ORR activity, and after an accelerated durability test the differences in the ORR activities of the three catalysts became more pronounced. In single cell tests, the Pt/OMC-CNTbased cathode showed a current density markedly greater than those of the other two cathodes after a high-voltage degradation test. These results were supported by the fact that the Pt/OMC-CNT-based cathode had the lowest resistance, which was probed by electrochemical impedance spectroscopy (EIS). The results of the single cell tests as well as those of the EIS-based measurements indicate that the rigidly interconnected structure of the OMC-CNT as well as their highly conductive frameworks are concomitantly responsible for the OMC-CNT nanocomposites exhibiting higher current density and durability than the other two carbons.close17

    Synthesis and characterization of mesoporous carbon for fuel cell applications

    No full text
    The synthesis and application aspects of ordered mesoporous carbon (OMC) as a novel material for fuel cell catalysts are reviewed in this paper. The synthesis and structural characterization of OMC is outlined and the recent advances in the synthesis of OMC relevant to fuel cell technologies is presented. Recent examples of the application of OMC as a support for fuel cell catalysts are summarized and practical approaches for the application of OMC for the fuel cell systems are discussed. Future perspectives on the use of OMC in energy conversion and storage devices are also suggested.close18718

    A Gram Scale Soft-Template Synthesis of Heteroatom Doped Nanoporous Hollow Carbon Spheres for Oxygen Reduction Reaction

    No full text
    Heteroatom-doped nanoporous carbon materials with unique hierarchical structures have been shown to be promising supports and catalysts for energy conversion; however, hard-template methods are limited by their inflexibility and time-consuming process. Soft-template methods have been suggested as an alternative, but they are limited by their picky requirements for stable reactions and the few known precursors for small-batch synthesis. In this study, a gram-scale soft-template-based silica-assisted method was investigated for producing nitrogen-doped hollow nanoporous carbon spheres (N-HNCS). Nitrogen doping is accomplished during preparation with enhanced electrocatalytic activity without complicating the methodology. To investigate the effect of the unique structural characteristics of N-HNCS (specific surface area: 1250 m2 g−1; pore volume: 1.2 cm3 g−1), cobalt was introduced as an active center for the oxygen reduction reaction. Finely tuned reaction conditions resulted in well-dispersed cobalt particles with minimal agglomeration. This sheds light on the advancement of new experimental procedures for developing more active and promising non-noble catalysts in large and stable batches

    Design and Synthesis of Cross-Linked Copolymer Membranes Based on Poly(benzoxazine) and Polybenzimidazole and Their Application to an Electrolyte Membrane for a High-Temperature PEM Fuel Cell

    No full text
    Elevated-temperature (100~200 °C) polymer electrolyte membrane (PEM) fuel cells have many features, such as their high efficiency and simple system design, that make them ideal for residential micro-combined heat and power systems and as a power source for fuel cell electric vehicles. A proton-conducting solid-electrolyte membrane having high conductivity and durability at elevated temperatures is essential, and phosphoric-acid-containing polymeric material synthesized from cross-linked polybenzoxazine has demonstrated feasible characteristics. This paper reviews the design rules, synthesis schemes, and characteristics of this unique polymeric material. Additionally, a membrane electrode assembly (MEA) utilizing this polymer membrane is evaluated in terms of its power density and lifecycle by an in situ accelerated lifetime test. This paper also covers an in-depth discussion ranging from the polymer material design to the cell performance in consideration of commercialization requirements
    corecore