86 research outputs found
Mobile Communications Beyond 52.6 GHz: Waveforms, Numerology, and Phase Noise Challenge
In this article, the first considerations for the 5G New Radio (NR) physical
layer evolution to support beyond 52.6GHz communications are provided. In
addition, the performance of both OFDM based and DFT-s-OFDM based networks are
evaluated with special emphasis on the phase noise (PN) induced distortion. It
is shown that DFT-s-OFDM is more robust against PN under 5G NR Release 15
assumptions, namely regarding the supported phase tracking reference signal
(PTRS) designs, since it enables more effective PN mitigation directly in the
time domain. To further improve the PN compensation capabilities, the PTRS
design for DFT-s-OFDM is revised, while for the OFDM waveform a novel block
PTRS structure is introduced, providing similar link performance as DFT-s-OFDM
with enhanced PTRS design. We demonstrate that the existing 5G NR Release 15
solutions can be extended to support efficient mobile communications at 60GHz
carrier frequency with the enhanced PTRS structures. In addition, DFT-s-OFDM
based downlink for user data could be considered for beyond 52.6GHz
communications to further improve system power efficiency and performance with
higher order modulation and coding schemes. Finally, network link budget and
cell size considerations are provided, showing that at certain bands with
specific transmit power regulation, the cell size can eventually be downlink
limited.Comment: This manuscript has been submitted to IEEE Wireless Communications
Magazine (WCM). 8 pages, 4 figures, and 2 table
Positioning of High-speed Trains using 5G New Radio Synchronization Signals
We study positioning of high-speed trains in 5G new radio (NR) networks by
utilizing specific NR synchronization signals. The studies are based on
simulations with 3GPP-specified radio channel models including path loss,
shadowing and fast fading effects. The considered positioning approach exploits
measurement of Time-Of-Arrival (TOA) and Angle-Of-Departure (AOD), which are
estimated from beamformed NR synchronization signals. Based on the given
measurements and the assumed train movement model, the train position is
tracked by using an Extended Kalman Filter (EKF), which is able to handle the
non-linear relationship between the TOA and AOD measurements, and the estimated
train position parameters. It is shown that in the considered scenario the TOA
measurements are able to achieve better accuracy compared to the AOD
measurements. However, as shown by the results, the best tracking performance
is achieved, when both of the measurements are considered. In this case, a very
high, sub-meter, tracking accuracy can be achieved for most (>75%) of the
tracking time, thus achieving the positioning accuracy requirements envisioned
for the 5G NR. The pursued high-accuracy and high-availability positioning
technology is considered to be in a key role in several envisioned HST use
cases, such as mission-critical autonomous train systems.Comment: 6 pages, 5 figures, IEEE WCNC 2018 (Wireless Communications and
Networking Conference
Efficient Fast-Convolution-Based Waveform Processing for 5G Physical Layer
This paper investigates the application of fast-convolution (FC) filtering
schemes for flexible and effective waveform generation and processing in the
fifth generation (5G) systems. FC-based filtering is presented as a generic
multimode waveform processing engine while, following the progress of 5G new
radio standardization in the Third-Generation Partnership Project, the main
focus is on efficient generation and processing of subband-filtered cyclic
prefix orthogonal frequency-division multiplexing (CP-OFDM) signals. First, a
matrix model for analyzing FC filter processing responses is presented and used
for designing optimized multiplexing of filtered groups of CP-OFDM physical
resource blocks (PRBs) in a spectrally well-localized manner, i.e., with narrow
guardbands. Subband filtering is able to suppress interference leakage between
adjacent subbands, thus supporting independent waveform parametrization and
different numerologies for different groups of PRBs, as well as asynchronous
multiuser operation in uplink. These are central ingredients in the 5G waveform
developments, particularly at sub-6-GHz bands. The FC filter optimization
criterion is passband error vector magnitude minimization subject to a given
subband band-limitation constraint. Optimized designs with different guardband
widths, PRB group sizes, and essential design parameters are compared in terms
of interference levels and implementation complexity. Finally, extensive coded
5G radio link simulation results are presented to compare the proposed approach
with other subband-filtered CP-OFDM schemes and time-domain windowing methods,
considering cases with different numerologies or asynchronous transmissions in
adjacent subbands. Also the feasibility of using independent transmitter and
receiver processing for CP-OFDM spectrum control is demonstrated
- …
