473 research outputs found
INTEGRAL study of temporal properties of bright flares in Supergiant Fast X-ray Transients
We have characterized the typical temporal behaviour of the bright X-ray
flares detected from the three Supergiant Fast X-ray Transients showing the
most extreme transient behaviour (XTEJ1739-302, IGRJ17544-2619,
SAXJ1818.6-1703). We focus here on the cumulative distributions of the
waiting-time (time interval between two consecutive X-ray flares), and the
duration of the hard X-ray activity (duration of the brightest phase of an SFXT
outburst), as observed by INTEGRAL/IBIS in the energy band 17-50 keV. Adopting
the cumulative distribution of waiting-times, it is possible to identify the
typical timescale that clearly separates different outbursts, each composed by
several single flares at ks timescale. This allowed us to measure the duration
of the brightest phase of the outbursts from these three targets, finding that
they show heavy-tailed cumulative distributions. We observe a correlation
between the total energy emitted during SFXT outbursts and the time interval
covered by the outbursts (defined as the elapsed time between the first and the
last flare belonging to the same outburst as observed by INTEGRAL). We show
that temporal properties of flares and outbursts of the sources, which share
common properties regardless different orbital parameters, can be interpreted
in the model of magnetized stellar winds with fractal structure from the
OB-supergiant stars.Comment: 10 pages, 8 figures, 1 table. Accepted for publication in MNRAS
(Accepted 2016 January 26. Received 2016 January 25 ; in original form 2015
December 15
Wide band observations of the X-ray burster GS 1826-238
GS 1826-238 is a well-studied X-ray bursting neutron star in a low mass
binary system. Thermal Comptonisation by a hot electron cloud is a widely
accepted mechanism accounting for its high energy emission, while the nature of
most of its soft X-ray output is not completely understood. A further low
energy component is typically needed to model the observed spectra: pure
blackbody and Comptonisation-modified blackbody radiation by a lower
temperature (a few keV) electron plasma were suggested to explain the low
energy data. We studied the steady emission of GS 1826-238 by means of broad
band (X to soft Gamma-rays) measurements obtained by the INTEGRAL observatory
in 2003 and 2006. The newly developed, up-to-date Comptonisation model CompTB
is applied for the first time to study effectively the low-hard state
variability of a low-luminosity neutron star in a low-mass X-ray binary system.
We confirm that the 3-200 keV emission of \GS is characterised by
Comptonisation of soft seed photons by a hot electron plasma. A single spectral
component is sufficient to model the observed spectra. At lower energies, no
direct blackbody emission is observed and there is no need to postulate a low
temperature Compton region. Compared to the 2003 measurements, the plasma
temperature decreased from 20 to 14 keV in 2006, together with the seed photons
temperature. The source intensity was also found to be 30% lower in 2006,
whilst the average recurrence frequency of the X-ray bursts significantly
increased. Possible explanations for this apparent deviation from the typical
limit-cycle behaviour of this burster are discussed.Comment: 6 pages, 2 figures. Accepted for publication in A&
XMM-Newton and NuSTAR simultaneous X-ray observations of IGR J11215-5952
We report the results of an XMM-Newton and NuSTAR coordinated observation of
the Supergiant Fast X-ray Transient (SFXT) IGRJ11215-5952, performed on
February 14, 2016, during the expected peak of its brief outburst, which
repeats every about 165 days. Timing and spectral analysis were performed
simultaneously in the energy band 0.4-78 keV. A spin period of 187.0 +/- 0.4 s
was measured, consistent with previous observations performed in 2007. The
X-ray intensity shows a large variability (more than one order of magnitude) on
timescales longer than the spin period, with several luminous X-ray flares
which repeat every 2-2.5 ks, some of which simultaneously observed by both
satellites. The broad-band (0.4-78 keV) time-averaged spectrum was well
deconvolved with a double-component model (a blackbody plus a power-law with a
high energy cutoff) together with a weak iron line in emission at 6.4 keV
(equivalent width, EW, of 40+/-10 eV). Alternatively, a partial covering model
also resulted in an adequate description of the data. The source time-averaged
X-ray luminosity was 1E36 erg/s (0.1-100 keV; assuming 7 kpc). We discuss the
results of these observations in the framework of the different models proposed
to explain SFXTs, supporting a quasi-spherical settling accretion regime,
although alternative possibilities (e.g. centrifugal barrier) cannot be ruled
out.Comment: 13 pages, 11 figures, accepted for publication on The Astrophysical
Journa
Chandra deep X-ray observation on the Galactic plane
Using the Chandra ACIS-I instruments, we have carried out the deepest X-ray
observation on a typical Galactic plane region at l 28.5 deg, where no discrete
X-ray sources have been known previously. We have detected, as well as strong
diffuse emission, 275 new point X-ray sources (4 sigma confidence) within two
partially overlapping fields (~250 arcmin^2 in total) down to ~3 x 10^{-15} erg
s^{-1} cm^{-2} (2 -- 10 keV) or ~ 7 x 10^{-16} erg s^{-1} cm^{-2} (0.5 -- 2
keV). We have studied spectral distribution of these point sources, and found
that very soft sources detected only below ~ 3 keV are more numerous than hard
sources detected only above ~ 3 keV. Only small number of sources are detected
both in the soft and hard bands. Surface density of the hard sources is almost
consistent with that at high Galactic regions, thus most of the hard sources
are considered to be Active Galactic Nuclei seen through the milky way. On the
other hand, some of the bright hard X-ray sources which show extremely flat
spectra and iron line or edge features are considered to be Galactic,
presumably quiescent dwarf novae. The soft sources show thermal spectra and
small interstellar hydrogen column densities, and some of them exhibit X-ray
flares. Therefore, most of the soft sources are probably X-ray active nearby
late type stars.Comment: Contribution to the proceedings of the "New Visions of the X-Ray
Universe in the XMM-Newton and Chandra Era" symposium at ESTEC, The
Netherlands. 26-30 Nov. 200
The nature of the X-ray binary IGR J19294+1816 from INTEGRAL, RXTE, and Swift observations
We report the results of a high-energy multi-instrumental campaign with
INTEGRAL, RXTE, and Swift of the recently discovered INTEGRAL source IGR
J19294+1816. The Swift/XRT data allow us to refine the position of the source
to RA= 19h 29m 55.9s Dec=+18deg 18' 38.4" (+- 3.5"), which in turn permits us
to identify a candidate infrared counterpart. The Swift and RXTE spectra are
well fitted with absorbed power laws with hard (Gamma ~ 1) photon indices.
During the longest Swift observation, we obtained evidence of absorption in
true excess to the Galactic value, which may indicate some intrinsic absorption
in this source. We detected a strong (P=40%) pulsation at 12.43781 (+-0.00003)
s that we interpret as the spin period of a pulsar. All these results, coupled
with the possible 117 day orbital period, point to IGR J19294+1816 being an
HMXB with a Be companion star. However, while the long-term INTEGRAL/IBIS/ISGRI
18--40 keV light curve shows that the source spends most of its time in an
undetectable state, we detect occurrences of short (~2000-3000 s) and intense
flares that are more typical of supergiant fast X-ray transients. We therefore
cannot make firm conclusions on the type of system, and we discuss the possible
implications of IGR J19294+1816 being an SFXT.Comment: 7 pages, 6 figures, accepted for publication in A&
- …