1,556 research outputs found

    Comparison of embedded and added motor imagery training in patients after stroke: Results of a randomised controlled pilot trial

    Get PDF
    Copyright @ 2012 Schuster et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Motor imagery (MI) when combined with physiotherapy can offer functional benefits after stroke. Two MI integration strategies exist: added and embedded MI. Both approaches were compared when learning a complex motor task (MT): ‘Going down, laying on the floor, and getting up again’. Methods: Outpatients after first stroke participated in a single-blinded, randomised controlled trial with MI embedded into physiotherapy (EG1), MI added to physiotherapy (EG2), and a control group (CG). All groups participated in six physiotherapy sessions. Primary study outcome was time (sec) to perform the motor task at pre and post-intervention. Secondary outcomes: level of help needed, stages of MT-completion, independence, balance, fear of falling (FOF), MI ability. Data were collected four times: twice during one week baseline phase (BL, T0), following the two week intervention (T1), after a two week follow-up (FU). Analysis of variance was performed. Results: Thirty nine outpatients were included (12 females, age: 63.4 ± 10 years; time since stroke: 3.5 ± 2 years; 29 with an ischemic event). All were able to complete the motor task using the standardised 7-step procedure and reduced FOF at T0, T1, and FU. Times to perform the MT at baseline were 44.2 ± 22s, 64.6 ± 50s, and 118.3 ± 93s for EG1 (N = 13), EG2 (N = 12), and CG (N = 14). All groups showed significant improvement in time to complete the MT (p < 0.001) and degree of help needed to perform the task: minimal assistance to supervision (CG) and independent performance (EG1+2). No between group differences were found. Only EG1 demonstrated changes in MI ability over time with the visual indicator increasing from T0 to T1 and decreasing from T1 to FU. The kinaesthetic indicator increased from T1 to FU. Patients indicated to value the MI training and continued using MI for other difficult-to-perform tasks. Conclusions: Embedded or added MI training combined with physiotherapy seem to be feasible and benefi-cial to learn the MT with emphasis on getting up independently. Based on their baseline level CG had the highest potential to improve outcomes. A patient study with 35 patients per group could give a conclusive answer of a superior MI integration strategy.The research project was partially funded by the Gottfried und Julia Bangerter-Rhyner Foundation

    Negative Cooperativity in the Nitrogenase Fe Protein Electron Delivery Cycle

    Get PDF
    Nitrogenase catalyzes the ATP-dependent reduction of dinitrogen (N2) to two ammonia (NH3) molecules through the participation of its two protein components, the MoFe and Fe proteins. Electron transfer (ET) from the Fe protein to the catalytic MoFe protein involves a series of synchronized events requiring the transient association of one Fe protein with each αβ half of the α2β2 MoFe protein. This process is referred to as the Fe protein cycle and includes binding of two ATP to an Fe protein, association of an Fe protein with the MoFe protein, ET from the Fe protein to the MoFe protein, hydrolysis of the two ATP to two ADP and two Pi for each ET, Pi release, and dissociation of oxidized Fe protein-(ADP)2 from the MoFe protein. Because the MoFe protein tetramer has two separate αβ active units, it participates in two distinct Fe protein cycles. Quantitative kinetic measurements of ET, ATP hydrolysis, and Pi release during the presteady-state phase of electron delivery demonstrate that the two halves of the ternary complex between the MoFe protein and two reduced Fe protein-(ATP)2 do not undergo the Fe protein cycle independently. Instead, the data are globally fit with a two-branch negative-cooperativity kinetic model in which ET in one-half of the complex partially suppresses this process in the other. A possible mechanism for communication between the two halves of the nitrogenase complex is suggested by normal-mode calculations showing correlated and anticorrelated motions between the two halves

    Submarine glacial landforms on the Bay of Fundy–northern Gulf of Maine continental shelf

    Get PDF
    Author Posting. © The Author(s), 2016. This is the author's version of the work. It is posted here by permission of Geological Society of London for personal use, not for redistribution. The definitive version was published in Geological Society, London, Memoirs 46 (2016): 429-436, doi:10.1144/M46.154.The Bay of Fundy–northern Gulf of Maine region surrounds the southern part of Nova Scotia, encompassing, from west to east, the Bay of Fundy, Grand Manan Basin, German Bank, Browns Bank, Northeast Channel, and northeastern Georges Bank (Fig. 1a). During the last glacial maximum (~24–20 14C ka BP), the southeast margin of the Laurentide Ice Sheet (LIS) occupied the study area, the rest of the Gulf of Maine, and the continental Scotian Shelf off Atlantic Canada (see Dyke et al. 2002, Fig. 1; Hundert & Piper 2008, Fig. 16; Shaw et al. 2006, Fig. 8). Early mapping of the glaciated region on the Scotian Shelf using side-scan sonar imagery and seismic reflection profiles revealed topographic features interpreted to be recessional moraines indicative of retreat of the LIS (King et al. 1972; King 1996; Stea et al. 1998). Subsequently, multibeam sonar seafloor mapping of local-scale glacial landforms on the inner Scotian Shelf off Halifax, Nova Scotia (Fig. 1a) provided further information on the dynamics of the advance and retreat of the ice sheet (Loncarevic et al. 1994). Interpretation of seismic reflection profiles across Georges Bank revealed that the surficial sediment is a veneer of glacial debris transported to Georges Bank by the LIS during the late Pleistocene from continental areas to the north (Shepard et al. 1934; Knott & Hoskins 1968; Oldale & Uchupi 1970; Schlee 1973; Schlee & Pratt 1970; Twichell et al. 1987; Fader et al. 1988). Recent high-resolution multibeam sonar surveys of German Bank and the Bay of Fundy mapped a complex of ice-advance and ice-retreat features attributed to the activity of the LIS (Todd et al. 2007; Todd & Shaw 2012).2017-11-0

    Hot summers in the Western United States during the Late Cretaceous and Early Cenozoic

    Get PDF
    Understanding how seasonal temperatures on land respond to global greenhouse climate conditions is important for predicting effects of climate change on ecosystem structure, agriculture and distributions of natural resources. Fossil floral and faunal assemblages suggest winter temperatures in middle and high latitude continental interiors during the Cretaceous and early Cenozoic were at or above freezing, whereas terrestrial summer temperature estimates are uncertain. Carbonate clumped isotope (Δ_(47)) temperature estimates from lacustrine and paleosol carbonates appear to be generally biased toward summer temperatures in middle and high latitudes. Though problematic for reconstructing mean annual temperature (MAT), this bias presents an opportunity to reconstruct terrestrial summer temperatures and, through comparison with paleobotanical data, estimate past terrestrial seasonality

    57 second oscillations in Nova Centauri 1986 (V842 Cen)

    Full text link
    High speed photometry in 2008 shows that the light curve of V842 Cen possesses a coherent modulation at 56.825 s, with sidebands at 56.598 s and 57.054 s. These have appeared since this nova remnant was observed in 2000 and 2002. We deduce that the dominant signal is the rotation period of the white dwarf primary and the sidebands are caused by reprocessing from a surface moving with an orbital period of 3.94 h. Thus V842 Cen is an intermediate polar (IP) of the DQ Herculis subclass, is the fastest rotating white dwarf among the IPs and is the third fastest known in a cataclysmic variable. As in other IPs we see no dwarf nova oscillations, but there are often quasi-periodic oscillations in the range 350 - 1500 s. There is a strong brightness modulation with a period of 3.78 h, which we attribute to negative superhumps, and there is an even stronger signal at 2.886 h which is of unknown origin but is probably a further example of that seen in GW Lib and some other systems. We used the Swift satellite to observe V842 Cen in the ultra-violet and in X-rays, although no periodic modulation was detected in the short observations. The X-ray luminosity of this object appears to be much lower than that of other IPs in which the accretion region is directly visible.Comment: 6 pages, 10 figures, accepted for publication in MNRA

    Quiet Supersonic Flights 2018 (QSF18) Test: Galveston, Texas Risk Reduction for Future Community Testing with a Low-Boom Flight Demonstration Vehicle

    Get PDF
    The Quiet Supersonic Flights 2018 (QSF18) Program was designed to develop tools and methods for demonstration of overland supersonic flight with an acceptable sonic boom, and collect a large dataset of responses from a representative sample of the population. Phase 1 provided the basis for a low amplitude sonic boom testing in six different climate regions that will enable international regulatory agencies to draft a noise-based standard for certifying civilian supersonic overland flight. Phase 2 successfully executed a large scale test in Galveston, Texas, developed well documented data sets, calculated dose response relationships, yielded lessons, and identified future risk reduction activities

    Design of a Mobile Underwater Charging System

    Get PDF
    Autonomous Underwater Vehicles (AUVs) are extremely capable vehicles for numerous ocean related missions. AUVs are energy limited, resulting in short mission endurance on the scale of hours to days. Underwater Gliders (UGs) are able to operate on the order of months to years by using nontraditional propulsion methods. UGs, however, are unable to perform missions requiring high speed or direct forward motion due to the nature of their buoyancy driven motion. This work reviews the current state of the art in recharging AUVs and offers an underwater recharging network concept at a significantly reduced cost to traditional methods. The solution includes the design of a UG capable of serving as charge carrying agent that couples with and charges AUVs autonomously. The vehicle design is built on the work done previously at the Nonlinear and Autonomous Systems Lab on the development of ROUGHIE (Research Oriented Underwater Glider for Hands-on Investigative Engineering). The ROUGHIE2 design is a rethinking of the original ROUGHIE capabilities to serve as a mobile charger by increasing depth rating, endurance, and payload capacity. The recharging concept presented will be easy to adapt to many different AUVs and UGs making this technology universal to small AUVs

    System Design Analysis of a Lightweight Laser Satellite Terminal

    Get PDF
    This study investigated the technological feasibility of a man- portable satellite laser communications system. Areas of interest were an end- to-end system analysis on the communications link evaluation of atmospheric effects and evaluation of semi-conductor lasers as the laser source. A literature search revealed that satellite laser communication research is primarily directed at inter-satellite links. There have been some proposed systems for space-to-ground laser communications systems, but they all utilize large fixed ground stations. The focus of this research effort is directed at a small man-portable ground station capitalizing on recent advances in semiconductor laser devices. Baseline satellite communication systems were analyzed for both conventional radio frequency systems and a laser communication system. Modifications to the laser communications system were explored, and found to be feasible for some applications. Atmospheric effects were explored and are a major contributor to system degradation. Semiconductor laser sources were evaluated and are currently useful for some satellite laser communication applications
    corecore