9,077 research outputs found

    Three-dimensional Dirac oscillator in a thermal bath

    Full text link
    The thermal properties of the three-dimensional Dirac oscillator are considered. The canonical partition function is determined, and the high-temperature limit is assessed. The degeneracy of energy levels and their physical implications on the main thermodynamic functions are analyzed, revealing that these functions assume values greater than the one-dimensional case. So that at high temperatures, the limit value of the specific heat is three times bigger.Comment: 9 pages, 4 figures. Text improved, references added. Revised to match accepted version in Europhysics Letters

    Electronic transport through bilayer graphene flakes

    Full text link
    We investigate the electronic transport properties of a bilayer graphene flake contacted by two monolayer nanoribbons. Such a finite-size bilayer flake can be built by overlapping two semiinfinite ribbons or by depositing a monolayer flake onto an infinite nanoribbon. These two structures have a complementary behavior, that we study and analyze by means of a tight-binding method and a continuum Dirac model. We have found that for certain energy ranges and geometries, the conductance of these systems oscillates markedly between zero and the maximum value of the conductance, allowing for the design of electromechanical switches. Our understanding of the electronic transmission through bilayer flakes may provide a way to measure the interlayer hopping in bilayer graphene.Comment: 11 pages, 8 figure

    Treating some solid state problems with the Dirac equation

    Full text link
    The ambiguity involved in the definition of effective-mass Hamiltonians for nonrelativistic models is resolved using the Dirac equation. The multistep approximation is extended for relativistic cases allowing the treatment of arbitrary potential and effective-mass profiles without ordering problems. On the other hand, if the Schrodinger equation is supposed to be used, our relativistic approach demonstrate that both results are coincidents if the BenDaniel and Duke prescription for the kinetic-energy operator is implemented. Applications for semiconductor heterostructures are discussed.Comment: 06 pages, 5 figure

    Determination of phytoextraction potential of plant speciesfor toxic elements in soils of abandoned sulphide-mining areas

    Get PDF
    This study has determined contamination levels in soils and plants from the SaËœo Domingos mining area, Portugal, by k0-INAA. Total concentrations of As, Sb, Cr, Hg, Cu, Zn and Fe in soils were very high, exceeding the maximum limits in Portuguese legislation. Concentrations of toxic elements like As, Sb and Zn were highest in roots of Erica andevalensis, Juncus acutus, Agrostis castellana and Nicotiana glauca. Additionally, As, Br, Cr, Fe, Sb and Zn in all organs of most plants were above toxicity levels. Those species that accumulated relatively high concentrations of toxic elements in roots (and tops) may be cultivated for phytostabilisation of similar areas

    Direct observation of melting in a 2-D superconducting vortex lattice

    Full text link
    Topological defects such as dislocations and disclinations are predicted to determine the twodimensional (2-D) melting transition. In 2-D superconducting vortex lattices, macroscopic measurements evidence melting close to the transition to the normal state. However, the direct observation at the scale of individual vortices of the melting sequence has never been performed. Here we provide step by step imaging through scanning tunneling spectroscopy of a 2-D system of vortices up to the melting transition in a focused-ion-beam nanodeposited W-based superconducting thin film. We show directly the transition into an isotropic liquid below the superconducting critical temperature. Before that, we find a hexatic phase, characterized by the appearance of free dislocations, and a smectic-like phase, possibly originated through partial disclination unbinding. These results represent a significant step in the understanding of melting of 2-D systems, with impact across several research fields, such as liquid crystal molecules, or lipids in membranes.Comment: Submitted to Nature Physic

    Rainfall Erosivity in Apeú River Watershed, Northeastern State of Pará, in the Brazilian Amazon Region.

    Get PDF
    Resumo em português: Erosividade das Chuvas na Bacia Hidrográfica do Rio Apeú, Região Nordeste do Estado do Pará

    Assessment of the durability performance of fiber-cement sheets

    Get PDF
    According to standards, the durability performance of fiber-cement sheets must be evaluated by comparing the modulus of rupture (MOR) before and after durability tests (freeze-thaw, soak-dry, and warm water) are completed. This paper investigated the MOR of two different fiber-cement sheets samples before and after durability tests as well as its ductility and toughness. Results showed no significant difference between the MOR of control specimens and that of the specimens submitted to durability tests except in the case of the freezing and thawing test where after 100 cycles, a 7–9% decrease was observed. The differences between the MOR of the control specimens and that of the specimens submitted to durability tests were negligible and acceptable in accordance to the requirements of the standard. However, toughness and ductility decreased considerably in specimens of sample 1 by 25, 35, and 15%, respectively, when exposed to soak-dry (25 and 50 cycles) and warm water conditions. In turn, the reduction in toughness and ductility for specimens of sample 2 exposed to soak-dry (50 cycles) and warm water conditions were of 40 and 7%, respectively. The results of this investigation suggest that ductility and toughness should also be considered to assess the durability performance of fiber-cement sheets

    Cementitious composites reinforced with polypropylene, nylon and polyacrylonitile fibres

    Get PDF
    This paper compares the adhesion strength between three polymeric fibres (polypropylene (PP), nylon66 (N66) and polyacrylonitrile (PAN)) embedded in a cement paste. The specimens were prepared at a water to cement ratio (w/c) of 0.5, and tested after 7, 14 and 28 curing days. It was found that although the adhesion between the polymeric fibres to the cement matrix is an important factor, the energy absorption capacity or energy dissipation ability of the fibres plays a more important role in the improvement of the cementitious composites fracture toughness. Scanning electron micrographs was used to characterize the fibres surface before and after the Pullout tests

    Evaluation of adhesion in polymeric fibre reinforced cementitious composites

    Get PDF
    In this study adhesion of some polymeric fibres to a cement matrix was evaluated both by a theoretical and by an experimental approach. In common methods adhesion of the fibres to the cementitious materials is determined by pull-out test. This test evaluates the energy failure during the fibre drawing out. This paper analyzes the adhesion theory for fibre reinforced cementitious composites to separate the share of the chemical and mechanical adhesion expressing new parameters, which are effective in the adhesion behaviour. Explanations about how the different fibres, matrix properties, test factors and environmental conditions can affect the adhesion results are given. It was found that for fibre/cement composites the fracture energy due to the interfacial interactions is for several orders of magnitude smaller that the polymeric fibre losses function. By employing adhesion theory, fibre/cement interac- tions are better described by a simple relationship of their surface free energy. Determination of the loss function (energy dissipation) leads us to predict the fibre behaviour in the cement matrix and the selection of the appropriate reinforcement
    • …
    corecore