8,979 research outputs found

    A Fast and Efficient Algorithm for Slater Determinant Updates in Quantum Monte Carlo Simulations

    Full text link
    We present an efficient low-rank updating algorithm for updating the trial wavefunctions used in Quantum Monte Carlo (QMC) simulations. The algorithm is based on low-rank updating of the Slater determinants. In particular, the computational complexity of the algorithm is O(kN) during the k-th step compared with traditional algorithms that require O(N^2) computations, where N is the system size. For single determinant trial wavefunctions the new algorithm is faster than the traditional O(N^2) Sherman-Morrison algorithm for up to O(N) updates. For multideterminant configuration-interaction type trial wavefunctions of M+1 determinants, the new algorithm is significantly more efficient, saving both O(MN^2) work and O(MN^2) storage. The algorithm enables more accurate and significantly more efficient QMC calculations using configuration interaction type wavefunctions

    Density-density functionals and effective potentials in many-body electronic structure calculations

    Full text link
    We demonstrate the existence of different density-density functionals designed to retain selected properties of the many-body ground state in a non-interacting solution starting from the standard density functional theory ground state. We focus on diffusion quantum Monte Carlo applications that require trial wave functions with optimal Fermion nodes. The theory is extensible and can be used to understand current practices in several electronic structure methods within a generalized density functional framework. The theory justifies and stimulates the search of optimal empirical density functionals and effective potentials for accurate calculations of the properties of real materials, but also cautions on the limits of their applicability. The concepts are tested and validated with a near-analytic model.Comment: five figure

    Pseudogap and antiferromagnetic correlations in the Hubbard model

    Full text link
    Using the dynamical cluster approximation and quantum monte carlo we calculate the single-particle spectra of the Hubbard model with next-nearest neighbor hopping t′t'. In the underdoped region, we find that the pseudogap along the zone diagonal in the electron doped systems is due to long range antiferromagnetic correlations. The physics in the proximity of (0,π)(0,\pi) is dramatically influenced by t′t' and determined by the short range correlations. The effect of t′t' on the low energy ARPES spectra is weak except close to the zone edge. The short range correlations are sufficient to yield a pseudogap signal in the magnetic susceptibility, produce a concomitant gap in the single-particle spectra near (π,π/2)(\pi,\pi/2) but not necessarily at a location in the proximity of Fermi surface.Comment: 5 pages, 4 figure

    Optimization of the CMDFT Code

    Get PDF
    This report outlines the optimization of the CMDFT code by Xiaoguang Zhang during June-July 2006. The overall improvement in speed is nearly 40%. Possible further optimizatins are also discussed
    • …
    corecore