21 research outputs found
A multi-photon Stokes-parameter invariant for entangled states
We consider the Minkowskian norm of the n-photon Stokes tensor, a scalar
invariant under the group realized by the transformations of stochastic local
quantum operations and classical communications (SLOCC). This invariant is
offered as a candidate entanglement measure for n-qubit states and discussed in
relation to measures of quantum state entanglement for certain important
classes of two-qubit and three-qubit systems. This invariant can be directly
estimated via a quantum network, obviating the need to perform laborious
quantum state tomography. We also show that this invariant directly captures
the extent of entanglement purification due to SLOCC filters.Comment: 9 pages, 0 figures, Accepted for publication in Physical Review
Radio Astronomical Polarimetry and the Lorentz Group
In radio astronomy the polarimetric properties of radiation are often
modified during propagation and reception. Effects such as Faraday rotation,
receiver cross-talk, and differential amplification act to change the state of
polarized radiation. A general description of such transformations is useful
for the investigation of these effects and for the interpretation and
calibration of polarimetric observations. Such a description is provided by the
Lorentz group, which is intimately related to the transformation properties of
polarized radiation. In this paper the transformations that commonly arise in
radio astronomy are analyzed in the context of this group. This analysis is
then used to construct a model for the propagation and reception of radio
waves. The implications of this model for radio astronomical polarimetry are
discussed.Comment: 10 pages, accepted for publication in Astrophysical Journa
Propagation of transverse intensity correlations of a two-photon state
The propagation of transverse spatial correlations of photon pairs through
arbitrary first-order linear optical systems is studied experimentally and
theoretically using the fractional Fourier transform. Highly-correlated photon
pairs in an EPR-like state are produced by spontaneous parametric
down-conversion and subject to optical fractional Fourier transform systems. It
is shown that the joint detection probability can display either correlation,
anti-correlation, or no correlation, depending on the sum of the orders
and of the transforms of the down-converted photons. We
present analytical results for the propagation of the perfectly correlated EPR
state, and numerical results for the propagation of the two-photon state
produced from parametric down-conversion. We find good agreement between theory
and experiment.Comment: 9 pages, 7 figures, to appear PR
X-ray Coherent diffraction interpreted through the fractional Fourier transform
Diffraction of coherent x-ray beams is treated through the Fractionnal
Fourier transform. The transformation allow us to deal with coherent
diffraction experiments from the Fresnel to the Fraunhofer regime. The analogy
with the Huygens-Fresnel theory is first discussed and a generalized
uncertainty principle is introduced.Comment: 7 pages, 8 figure
Stokes Parameters as a Minkowskian Four-vector
It is noted that the Jones-matrix formalism for polarization optics is a
six-parameter two-by-two representation of the Lorentz group. It is shown that
the four independent Stokes parameters form a Minkowskian four-vector, just
like the energy-momentum four-vector in special relativity. The optical filters
are represented by four-by-four Lorentz-transformation matrices. This
four-by-four formalism can deal with partial coherence described by the Stokes
parameters. A four-by-four matrix formulation is given for decoherence effects
on the Stokes parameters, and a possible experiment is proposed. It is shown
also that this Lorentz-group formalism leads to optical filters with a symmetry
property corresponding to that of two-dimensional Euclidean transformations.Comment: RevTeX, 22 pages, no figures, submitted to Phys. Rev.
Determination des fonctions spheroidales généralisées par méthode optique iterative
On rappelle que les modes de résonance d'une cavité optique confocale sont de nature sphéroîdale. En plaçant dans la cavité un élément amplificateur de lumière il devient possible d'obtenir ainsi physiquement ces modes et par conséquent l'ensemble des fonctions sphéroîdales auxquelles ils correspondent. Les lasers sont un exemple classique de réalisation physique d'un tel oscillateur. Cependant la présence dans ce cas d'un couplage entre oscillation et résonance impose, sur les dimensions de la cavité, des contraintes qui conduisent à ne considérer qu'un aspect asymptotique du problème sphéroîdal initial. On montre que la réalisation d'un résonateur utilisant un cristal de BSO (Oxyde de Bismuth Silicium) comme milieu actif, est par contre parfaitement bien adaptée à une détermination générale de ces fonctions. On présente enfin un certain nombre de modes sphéroîdaux obtenus selon ce principe et l'on discute de l'intérêt général d'une telle approche pour le calcul des fonctions sphéroîdales
orrélateur joint op tique appliqué à la détection multicible
On discute des avantages et inconvénients de l'utilisation d'un corrélateur joint non linéaire sous l'angle de la séléctivité et de la robustesse. On propose une implantation optique basée sur l'utilisation d'une valve optique à cristal liquide ferroélectrique. Du fait de ses temps de commutation rapides et de sa bistabilité, ce composant permet le traitement de plusieurs cibles, aussi bien qu'une modification de sa réponse non linéaire à une intensité. L'ajustement de cette non linéarité et son influence sur la sélectivité et la robustesse du corrélateur sont démontrés expérimentalement