2,054 research outputs found
Host-driven subspeciation in the hedgehog fungus, Trichophyton erinacei, an emerging cause of human dermatophytosis
Altres ajuts: Czech Ministry of Health (grant NU21-05-00681)Trichophyton erinacei is a main cause of dermatophytosis in hedgehogs and is increasingly reported from human infections worldwide. This pathogen was originally described in the European hedgehog (Erinaceus europaeus) but is also frequently found in the African four-toed hedgehog (Atelerix albiventris), a popular pet animal worldwide. Little is known about the taxonomy and population genetics of this pathogen despite its increasing importance in clinical practice. Notably, whether there are different populations or even cryptic species associated with different hosts or geographic regions is not known. To answer these questions, we collected 161 isolates, performed phylogenetic and population-genetic analyses, determined mating-type, and characterised morphology and physiology. Multigene phylogeny and microsatellite analysis supported T. erinacei as a monophyletic species, in contrast to highly incongruent single-gene phylogenies. Two main subpopulations, one specific mainly to Atelerix and second to Erinaceus hosts, were identified inside T. erinacei, and slight differences in the size of microconidia and antifungal susceptibilities were observed among them. Although the process of speciation into two lineages is ongoing in T. erinacei, there is still gene flow between these populations. Thus, we present T. erinacei as a single species, with notable intraspecies variability in genotype and phenotype. The data from wild hedgehogs indicated that sexual reproduction in T. erinacei and de novo infection of hedgehogs from soil are probably rare events and that clonal horizontal spread strongly dominates. The molecular typing approach used in this study represents a suitable tool for further epidemiological surveillance of this emerging pathogen in both animals and humans. The results of this study also highlighted the need to use a multigene phylogeny ideally in combination with other inde-pendent molecular markers to understand the species boundaries of dermatophytes
Rapid gains in yield and adoption of new maize varieties for complex hillside environments through farmer participation. II. Scaling-up the adoption through community-based seed production (CBSP)
Participatory varietal selection (PVS) led to the identification of Population-22 and its later release as Manakamana-3. Subsequently further mother–baby trials tested five unreleased open-pollinated varieties (OPVs), ZM-621, Shitala, Population-45, Hill Pool White, and Hill Pool Yellow to compare them with Manakamana-3. Farmers again preferred Manakamana-3 as well as ZM-621 for their stable, higher grain yield, and for other traits such as stay-green, non-lodging, large white grains, and tolerance to foliar diseases. However, Manakamana- 3 and ZM-621 both had late maturity, open husks and dented grain. Both were tested with farmers on-farm coordinated farmers field trials (CFFTs) and had not been identified as this was more contractual type of participatory research. Individual traits were measured but overall farmers’ preferences were not elicited. In the more collaborative participation of the mother– baby trials the overall preference was determined and farmers traded-off the late maturity and dented grains of Manakamana-3 and ZM-621 against other favorable traits. Depending on location, these genotypes yielded 15–45% more grain than the local varieties in the mother–baby trials. These results led to the release of ZM-621 as Deuti in 2006. Farmers had adopted Manakamana-3 (released in 2002) and ZM-621 (Deuti) as a direct result of PVS trials and increased area under them year after year. Farmers awareness of the varieties has increased and seeds of these varieties are under community-based seed production (CBSP). Involving farmers through a collaborative mode of participation in varietal selection overcame bottlenecks to finding new varieties that had occurred with more contractual on-farm research
Measurement of Atmospheric Neutrino Oscillations with the ANTARES Neutrino Telescope
The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total
live time of 863 days, are used to measure the oscillation parameters of
atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20
GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon
neutrinos of such energies crossing the Earth. The parameters determining the
oscillation of atmospheric neutrinos are extracted by fitting the event rate as
a function of the ratio of the estimated neutrino energy and reconstructed
flight path through the Earth. Measurement contours of the oscillation
parameters in a two-flavour approximation are derived. Assuming maximum mixing,
a mass difference of eV is
obtained, in good agreement with the world average value.Comment: 9 pages, 5 figure
A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007
We present the results of the first search for gravitational wave bursts
associated with high energy neutrinos. Together, these messengers could reveal
new, hidden sources that are not observed by conventional photon astronomy,
particularly at high energy. Our search uses neutrinos detected by the
underwater neutrino telescope ANTARES in its 5 line configuration during the
period January - September 2007, which coincided with the fifth and first
science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed
for candidate gravitational-wave signals coincident in time and direction with
the neutrino events. No significant coincident events were observed. We place
limits on the density of joint high energy neutrino - gravitational wave
emission events in the local universe, and compare them with densities of
merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at
http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access
area to figures, tables at
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000