1,195 research outputs found

    Classical dynamics on graphs

    Full text link
    We consider the classical evolution of a particle on a graph by using a time-continuous Frobenius-Perron operator which generalizes previous propositions. In this way, the relaxation rates as well as the chaotic properties can be defined for the time-continuous classical dynamics on graphs. These properties are given as the zeros of some periodic-orbit zeta functions. We consider in detail the case of infinite periodic graphs where the particle undergoes a diffusion process. The infinite spatial extension is taken into account by Fourier transforms which decompose the observables and probability densities into sectors corresponding to different values of the wave number. The hydrodynamic modes of diffusion are studied by an eigenvalue problem of a Frobenius-Perron operator corresponding to a given sector. The diffusion coefficient is obtained from the hydrodynamic modes of diffusion and has the Green-Kubo form. Moreover, we study finite but large open graphs which converge to the infinite periodic graph when their size goes to infinity. The lifetime of the particle on the open graph is shown to correspond to the lifetime of a system which undergoes a diffusion process before it escapes.Comment: 42 pages and 8 figure

    Chaotic and fractal properties of deterministic diffusion-reaction processes

    Full text link
    We study the consequences of deterministic chaos for diffusion-controlled reaction. As an example, we analyze a diffusive-reactive deterministic multibaker and a parameter-dependent variation of it. We construct the diffusive and the reactive modes of the models as eigenstates of the Frobenius-Perron operator. The associated eigenvalues provide the dispersion relations of diffusion and reaction and, hence, they determine the reaction rate. For the simplest model we show explicitly that the reaction rate behaves as phenomenologically expected for one-dimensional diffusion-controlled reaction. Under parametric variation, we find that both the diffusion coefficient and the reaction rate have fractal-like dependences on the system parameter.Comment: 14 pages (revtex), 12 figures (postscript), to appear in CHAO

    Quantum Hall-like effect for cold atoms in non-Abelian gauge potentials

    Full text link
    We study the transport of cold fermionic atoms trapped in optical lattices in the presence of artificial Abelian or non-Abelian gauge potentials. Such external potentials can be created in optical lattices in which atom tunneling is laser assisted and described by commutative or non-commutative tunneling operators. We show that the Hall-like transverse conductivity of such systems is quantized by relating the transverse conductivity to topological invariants known as Chern numbers. We show that this quantization is robust in non-Abelian potentials. The different integer values of this conductivity are explicitly computed for a specific non-Abelian system which leads to a fractal phase diagram.Comment: 6 pages, 2 figure

    Viscosity in the escape-rate formalism

    Full text link
    We apply the escape-rate formalism to compute the shear viscosity in terms of the chaotic properties of the underlying microscopic dynamics. A first passage problem is set up for the escape of the Helfand moment associated with viscosity out of an interval delimited by absorbing boundaries. At the microscopic level of description, the absorbing boundaries generate a fractal repeller. The fractal dimensions of this repeller are directly related to the shear viscosity and the Lyapunov exponent, which allows us to compute its values. We apply this method to the Bunimovich-Spohn minimal model of viscosity which is composed of two hard disks in elastic collision on a torus. These values are in excellent agreement with the values obtained by other methods such as the Green-Kubo and Einstein-Helfand formulas.Comment: 16 pages, 16 figures (accepted in Phys. Rev. E; October 2003

    On the long-time behavior of spin echo and its relation to free induction decay

    Full text link
    It is predicted that (i) spin echoes have two kinds of generic long-time decays: either simple exponential, or a superposition of a monotonic and an oscillatory exponential decays; and (ii) the long-time behavior of spin echo and the long-time behavior of the corresponding homogeneous free induction decay are characterized by the same time constants. This prediction extends to various echo problems both within and beyond nuclear magnetic resonance. Experimental confirmation of this prediction would also support the notion of the eigenvalues of time evolution operators in large quantum systems.Comment: 4 pages, 4 figure

    Quantum fingerprints of classical Ruelle-Pollicot resonances

    Full text link
    N-disk microwave billiards, which are representative of open quantum systems, are studied experimentally. The transmission spectrum yields the quantum resonances which are consistent with semiclassical calculations. The spectral autocorrelation of the quantum spectrum is shown to be determined by the classical Ruelle-Pollicot resonances, arising from the complex eigenvalues of the Perron-Frobenius operator. This work establishes a fundamental connection between quantum and classical correlations in open systems.Comment: 6 pages, 2 eps figures included, submitted to PR

    Complexity and non-separability of classical Liouvillian dynamics

    Full text link
    We propose a simple complexity indicator of classical Liouvillian dynamics, namely the separability entropy, which determines the logarithm of an effective number of terms in a Schmidt decomposition of phase space density with respect to an arbitrary fixed product basis. We show that linear growth of separability entropy provides stricter criterion of complexity than Kolmogorov-Sinai entropy, namely it requires that dynamics is exponentially unstable, non-linear and non-markovian.Comment: Revised version, 5 pages (RevTeX), with 6 pdf-figure

    Scarring in open quantum systems

    Get PDF
    We study scarring phenomena in open quantum systems. We show numerical evidence that individual resonance eigenstates of an open quantum system present localization around unstable short periodic orbits in a similar way as their closed counterparts. The structure of eigenfunctions around these classical objects is not destroyed by the opening. This is exposed in a paradigmatic system of quantum chaos, the cat map.Comment: 4 pages, 4 figure
    • …