468 research outputs found

    Differential equations and duality in massless integrable field theories at zero temperature

    Full text link
    Functional relations play a key role in the study of integrable models. We argue in this paper that for massless field theories at zero temperature, these relations can in fact be interpreted as monodromy relations. Combined with a recently discovered duality, this gives a way to bypass the Bethe ansatz, and compute directly physical quantities as solutions of a linear differential equation, or as integrals over a hyperelliptic curve. We illustrate these ideas in details in the case of the c=1c=1 theory, and the associated boundary sine-Gordon model.Comment: 18 pages, harvma

    Critical points in coupled Potts models and critical phases in coupled loop models

    Get PDF
    We show how to couple two critical Q-state Potts models to yield a new self-dual critical point. We also present strong evidence of a dense critical phase near this critical point when the Potts models are defined in their completely packed loop representations. In the continuum limit, the new critical point is described by an SU(2) coset conformal field theory, while in this limit of the the critical phase, the two loop models decouple. Using a combination of exact results and numerics, we also obtain the phase diagram in the presence of vacancies. We generalize these results to coupling two Potts models at different Q.Comment: 23 pages, 10 figure

    Time correlations in 1D quantum impurity problems

    Full text link
    We develop in this letter an analytical approach using form- factors to compute time dependent correlations in integrable quantum impurity problems. As an example, we obtain for the first time the frequency dependent conductivity G(ω)G(\omega) for the tunneling between the edges in the ν=1/3\nu=1/3 fractional quantum Hall effect, and the spectrum S(w)S(w) of the spin-spin correlation in the anisotropic Kondo model and equivalently in the double well system of dissipative quantum mechanics, both at vanishing temperature.Comment: 4 pages, Revtex and 2 figure

    A unified framework for the Kondo problem and for an impurity in a Luttinger liquid

    Full text link
    We develop a unified theoretical framework for the anisotropic Kondo model and the boundary sine-Gordon model. They are both boundary integrable quantum field theories with a quantum-group spin at the boundary which takes values, respectively, in standard or cyclic representations of the quantum group SU(2)qSU(2)_q. This unification is powerful, and allows us to find new results for both models. For the anisotropic Kondo problem, we find exact expressions (in the presence of a magnetic field) for all the coefficients in the ``Anderson-Yuval'' perturbative expansion. Our expressions hold initially in the very anisotropic regime, but we show how to continue them beyond the Toulouse point all the way to the isotropic point using an analog of dimensional regularization. For the boundary sine-Gordon model, which describes an impurity in a Luttinger liquid, we find the non-equilibrium conductance for all values of the Luttinger coupling.Comment: 36 pages (22 in double-page format), 7 figures in uuencoded file, uses harvmac and epsf macro

    Supersymmetric Model of Spin-1/2 Fermions on a Chain

    Full text link
    In recent work, N=2 supersymmetry has been proposed as a tool for the analysis of itinerant, correlated fermions on a lattice. In this paper we extend these considerations to the case of lattice fermions with spin 1/2 . We introduce a model for correlated spin-1/2 fermions with a manifest N=4 supersymmetry, and analyze its properties. The supersymmetric ground states that we find represent holes in an anti-ferromagnetic background.Comment: 15 pages, 10 eps figure

    Critical exponents of domain walls in the two-dimensional Potts model

    Full text link
    We address the geometrical critical behavior of the two-dimensional Q-state Potts model in terms of the spin clusters (i.e., connected domains where the spin takes a constant value). These clusters are different from the usual Fortuin-Kasteleyn clusters, and are separated by domain walls that can cross and branch. We develop a transfer matrix technique enabling the formulation and numerical study of spin clusters even when Q is not an integer. We further identify geometrically the crossing events which give rise to conformal correlation functions. This leads to an infinite series of fundamental critical exponents h_{l_1-l_2,2 l_1}, valid for 0 </- Q </- 4, that describe the insertion of l_1 thin and l_2 thick domain walls.Comment: 5 pages, 3 figures, 1 tabl

    Superfrustration of charge degrees of freedom

    Get PDF
    We review recent results, obtained with P. Fendley, on frustration of quantum charges in lattice models for itinerant fermions with strong repulsive interactions. A judicious tuning of kinetic and interaction terms leads to models possessing supersymmetry. In such models frustration takes the form of what we call superfrustration: an extensive degeneracy of supersymmetric ground states. We present a gallery of examples of superfrustration on a variety of 2D lattices.Comment: 8 pages, 5 figures, contribution to the proceedings of the XXIII IUPAP International Conference on Statistical Physics (2007) in Genova, Ital

    Cooper pairs and exclusion statistics from coupled free-fermion chains

    Full text link
    We show how to couple two free-fermion chains so that the excitations consist of Cooper pairs with zero energy, and free particles obeying (mutual) exclusion statistics. This behavior is reminiscent of anyonic superconductivity, and of a ferromagnetic version of the Haldane-Shastry spin chain, although here the interactions are local. We solve this model using the nested Bethe ansatz, and find all the eigenstates; the Cooper pairs correspond to exact-string or ``0/0'' solutions of the Bethe equations. We show how the model possesses an infinite-dimensional symmetry algebra, which is a supersymmetric version of the Yangian symmetry algebra for the Haldane-Shastry model.Comment: 16 pages. v2: includes explicit expression for super-Yangian generato
    • …
    corecore