1,456 research outputs found
On the Dichotomy between the Nodal and Antinodal Excitations in High-temperature Superconductors
Angle-resolved photoemission data on optimally- and under-doped high
temperature superconductors reveal a dichotomy between the nodal and antinodal
electronic excitations. In this paper we propose an explanation of this unusual
phenomenon by employing the coupling between the quasiparticle and the
commensurate/incommensurate magnetic excitations.Comment: 11 pages, 9 figure
Nodal Spin Density Wave and band topology of the FeAs based materials
The recently discovered FeAs-based materials exhibit a Spin Density
Wave (SDW) in the undoped state, which gives way to superconductivity upon
doping. Here we show that due to an interesting topological feature of the band
structure, the SDW state cannot acquire a full gap. This is demonstrated within
the SDW mean-field theory of both a simplified two band model and a more
realistic 5-band model. The positions of the nodes are different in the two
models and can be used to detected the validity of each model.Comment: rewritten for clarit
Trypsin inhibition by macrocyclic and open-chain variants of the squash inhibitor MCoTI-II
MCoTl-I and MCoTl-II from the seeds of Momordica cochinchinensis are inhibitors of trypsin-like proteases and the only known members of the large family of squash inhibitors that are cyclic and contain an additional loop connecting the amino- and the carboxy-terminus. To investigate the contribution of macrocycle formation to biological activity, we synthesized a set of open-chain variants of MCoTl-II that lack the cyclization loop and contain various natural and non-natural amino acid substitutions in the reactive-site loop. Upon replacement of P1 lysine residue \#10 within the open-chain variant of MCoTl-II by the non-natural isosteric nucleo amino acid AlaG{[}beta-(guanin-9-yl)-L-alanine], a conformationally restricted arginine mimetic, residual inhibitory activity was detected, albeit reduced by four orders of magnitude. While the cyclic inhibitors MCoTl-I and MCoTl-II were found to be very potent trypsin inhibitors, with picomolar inhibition constants, the open-chain variants displayed an approximately 10-fold lower affinity. These data suggest that the formation of a circular backbone in the MCoTI squash inhibitors results in enhanced affinity and therefore is a determinant of biological activity
Analysis of Dialogical Argumentation via Finite State Machines
Dialogical argumentation is an important cognitive activity by which agents
exchange arguments and counterarguments as part of some process such as
discussion, debate, persuasion and negotiation. Whilst numerous formal systems
have been proposed, there is a lack of frameworks for implementing and
evaluating these proposals. First-order executable logic has been proposed as a
general framework for specifying and analysing dialogical argumentation. In
this paper, we investigate how we can implement systems for dialogical
argumentation using propositional executable logic. Our approach is to present
and evaluate an algorithm that generates a finite state machine that reflects a
propositional executable logic specification for a dialogical argumentation
together with an initial state. We also consider how the finite state machines
can be analysed, with the minimax strategy being used as an illustration of the
kinds of empirical analysis that can be undertaken.Comment: 10 page
Resonant Energy Exchange between Atoms in Dispersing and Absorbing Surroundings
Within the framework of quantization of the macroscopic electromagnetic
field, a master equation describing both the resonant dipole-dipole interaction
(RDDI) and the resonant atom-field interaction (RAFI) in the presence of
dispersing and absorbing macroscopic bodies is derived, with the relevant
couplings being expressed in terms of the surroundings-assisted Green tensor.
It is shown that under certain conditions the RDDI can be regarded as being
governed by an effective Hamiltonian. The theory, which applies to both weak
and strong atom-field coupling, is used to study the resonant energy exchange
between two (two-level) atoms sharing initially a single excitation. In
particular, it is shown that in the regime of weak atom-field coupling there is
a time window, where the energy transfer follows a transfer-rate law of the
type obtained by ordinary second-order perturbation theory. Finally, the
spectrum of the light emitted during the energy transfer is studied and the
line splittings are discussed.Comment: 9 pages, 5 figs, Proceedings of ICQO'2002, Raubichi, to appear in
Optics and Spectroscop
Incompressible Quantum Liquids and New Conservation Laws
In this letter we investigate a class of Hamiltonians which, in addition to
the usual center-of-mass (CM) momentum conservation, also have center-of-mass
position conservation. We find that regardless of the particle statistics, the
energy spectrum is at least q-fold degenerate when the filling factor is ,
where and are coprime integers. Interestingly the simplest Hamiltonian
respecting this type of symmetry encapsulates two prominent examples of novel
states of matter, namely the fractional quantum Hall liquid and the quantum
dimer liquid. We discuss the relevance of this class of Hamiltonian to the
search for featureless Mott insulators.Comment: updated version, to be published by PR
Local Moments in an Interacting Environment
We discuss how local moment physics is modified by the presence of
interactions in the conduction sea. Interactions in the conduction sea are
shown to open up new symmetry channels for the exchange of spin with the
localized moment. We illustrate this conclusion in the strong-coupling limit by
carrying out a Schrieffer Wolff transformation for a local moment in an
interacting electron sea, and show that these corrections become very severe in
the approach to a Mott transition. As an example, we show how the Zhang Rice
reduction of a two-band model is modified by these new effects.Comment: Latex file with two postscript figures. Revised version, with more
fully detailed calculation
Magnetic order tuned by Cu substitution in Fe1.1-zCuzTe
We study the effects of Cu substitution in Fe1.1Te, the non-superconducting
parent compound of the iron-based superconductor, Fe1+yTe1-xSex, utilizing
neutron scattering techniques. It is found that the structural and magnetic
transitions, which occur at \sim 60 K without Cu, are monotonically depressed
with increasing Cu content. By 10% Cu for Fe, the structural transition is
hardly detectable, and the system becomes a spin glass below 22 K, with a
slightly incommensurate ordering wave vector of (0.5-d, 0, 0.5) with d being
the incommensurability of 0.02, and correlation length of 12 angstrom along the
a axis and 9 angstrom along the c axis. With 4% Cu, both transition
temperatures are at 41 K, though short-range incommensurate order at (0.42, 0,
0.5) is present at 60 K. With further cooling, the incommensurability decreases
linearly with temperature down to 37 K, below which there is a first order
transition to a long-range almost-commensurate antiferromagnetic structure. A
spin anisotropy gap of 4.5 meV is also observed in this compound. Our results
show that the weakly magnetic Cu has large effects on the magnetic
correlations; it is suggested that this is caused by the frustration of the
exchange interactions between the coupled Fe spins.Comment: 7 pages, 7 figures, version as appeared on PR
- …