6,094 research outputs found
Emergence of atom-light-mirror entanglement inside an optical cavity
We propose a scheme for the realization of a hybrid, strongly
quantum-correlated system formed of an atomic ensemble surrounded by a
high-finesse optical cavity with a vibrating mirror. We show that the steady
state of the system shows tripartite and bipartite continuous variable
entanglement in experimentally accessible parameter regimes, which is robust
against temperature
The spectral evolution of impulsive solar X-ray flares. II.Comparison of observations with models
We study the evolution of the spectral index and the normalization (flux) of
the non-thermal component of the electron spectra observed by RHESSI during 24
solar hard X-ray flares. The quantitative evolution is confronted with the
predictions of simple electron acceleration models featuring the soft-hard-soft
behaviour. The comparison is general in scope and can be applied to different
acceleration models, provided that they make predictions for the behavior of
the spectral index as a function of the normalization. A simple stochastic
acceleration model yields plausible best-fit model parameters for about 77% of
the 141 events consisting of rise and decay phases of individual hard X-ray
peaks. However, it implies unphysically high electron acceleration rates and
total energies for the others. Other simple acceleration models such as
constant rate of accelerated electrons or constant input power have a similar
failure rate. The peaks inconsistent with the simple acceleration models have
smaller variations in the spectral index. The cases compatible with a simple
stochastic model require typically a few times 10^36 electrons accelerated per
second at a threshold energy of 18 keV in the rise phases and 24 keV in the
decay phases of the flare peaks.Comment: 9 pages, 4 figures, accepted for publication by A&
Weak Measurements with Arbitrary Pointer States
The exact conditions on valid pointer states for weak measurements are
derived. It is demonstrated that weak measurements can be performed with any
pointer state with vanishing probability current density. This condition is
found both for weak measurements of noncommuting observables and for -number
observables. In addition, the interaction between pointer and object must be
sufficiently weak. There is no restriction on the purity of the pointer state.
For example, a thermal pointer state is fully valid.Comment: 4 page
Anthropogenic Disturbance and Environmental Associations with Fish Assemblage Structure in Two Nonwadeable Rivers
Nonwadeable rivers are unique ecosystems that support high levels of aquatic biodiversity, yet they have been greatly altered by human activities. Although riverine fish assemblages have been studied in the past, we still have an incomplete understanding of how fish assemblages respond to both natural and anthropogenic influences in large rivers. The purpose of this study was to evaluate associations between fish assemblage structure and reach-scale habitat, dam, and watershed land use characteristics. In the summers of 2011 and 2012, comprehensive fish and environmental data were collected from 33 reaches in the Iowa and Cedar rivers of eastern-central Iowa. Canonical correspondence analysis (CCA) was used to evaluate environmental relationships with species relative abundance, functional trait abundance (e.g. catch rate of tolerant species), and functional trait composition (e.g. percentage of tolerant species). On the basis of partial CCAs, reach-scale habitat, dam characteristics, and watershed land use features explained 25.0–81.1%, 6.2–25.1%, and 5.8–47.2% of fish assemblage variation, respectively. Although reach-scale, dam, and land use factors contributed to overall assemblage structure, the majority of fish assemblage variation was constrained by reach-scale habitat factors. Specifically, mean annual discharge was consistently selected in nine of the 11 CCA models and accounted for the majority of explained fish assemblage variance by reach-scale habitat. This study provides important insight on the influence of anthropogenic disturbances across multiple spatial scales on fish assemblages in large river systems
The spectral evolution of impulsive solar X-ray flares
The time evolution of the spectral index and the non-thermal flux in 24
impulsive solar hard X-ray flares of GOES class M was studied in RHESSI
observations. The high spectral resolution allows for a clean separation of
thermal and non-thermal components in the 10-30 keV range, where most of the
non-thermal photons are emitted. Spectral index and flux can thus be determined
with much better accuracy than before. The spectral soft-hard-soft behavior in
rise-peak-decay phases is discovered not only in the general flare development,
but even more pronounced in subpeaks. An empirically found power-law dependence
between the spectral index and the normalization of the non-thermal flux holds
during the rise and decay phases of the emission peaks. It is still present in
the combined set of all flares. We find an asymmetry in this dependence between
rise and decay phases of the non-thermal emission. There is no delay between
flux peak and spectral index minimum. The soft-hard-soft behavior appears to be
an intrinsic signature of the elementary electron acceleration process.Comment: 10 pages, 7 figures. Accepted for publication by A&
Mechanical Control of Spin States in Spin-1 Molecules and the Underscreened Kondo Effect
The ability to make electrical contact to single molecules creates
opportunities to examine fundamental processes governing electron flow on the
smallest possible length scales. We report experiments in which we controllably
stretch individual cobalt complexes having spin S = 1, while simultaneously
measuring current flow through the molecule. The molecule's spin states and
magnetic anisotropy were manipulated in the absence of a magnetic field by
modification of the molecular symmetry. This control enabled quantitative
studies of the underscreened Kondo effect, in which conduction electrons only
partially compensate the molecular spin. Our findings demonstrate a mechanism
of spin control in single-molecule devices and establish that they can serve as
model systems for making precision tests of correlated-electron theories.Comment: main text: 5 pages, 4 figures; supporting information attached; to
appear in Science
- …