25,233 research outputs found

    Flowmeter and Ground Penetrating Radar: comparison between hydrogeological and geophysical methods

    Get PDF
    We discuss a comparison between saturated hydraulic conductivity calculated with Electromagnetic Borehole Flowmeter (EBF) and water content obtained by Ground Penetrating Radar (GPR) Zero Offset Profile (ZOP

    Thermodynamics in the NC disc

    Get PDF
    We study the thermodynamics of a scalar field on a noncommutative disc implementing the boundary as the limit case of an interaction with an appropriately chosen confining background. We explicitly obtain expressions for thermodynamic potentials of gases of particles obeying different statistics. In order to do that, we derive an asymptotic expansion for the density of the zeros of Laguerre polynomials. As a result we prove that the Bose-Einstein condensation in the noncommutative disc does not take place.Fil: Franchino Viñas, Sebastián Alberto. Universitat Jena; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Pisani, P.. Facultad de Ciencias Exactas, Universidad Nacional de la Plata; Argentin

    The nuclear pseudospin symmetry along an isotopic chain

    Full text link
    We investigate the isospin dependence of pseudospin symmetry in the chain of tin isotopes (from 120^{120}Sn until 170^{170}Sn). Using a Woods-Saxon parametrization of the nuclear potential for these isotopes we study in detail the effect of the vector-isovector ρ\rho and Coulomb potentials in the energy splittings of neutron and proton pseudospin partners in the isotopic chain. We conclude that the realization of nuclear pseudospin symmetry does not change considerably with the mass number, and is always favored for neutrons. We also find that the ρ\rho potential accounts for essentially all the pseudospin isospin asymmetry observed and that the Coulomb potential plays a negligible role in this asymmetry. This can be explained by the dynamical nature of pseudospin symmetry in nuclei, namely the dependence of the pseudospin splittings on the shape of the nuclear mean-field potential.Comment: 4 pages, 4 figures, to be published in Brazilian Journal of Physic

    Three-dimensional phlebography of the saphenous venous system

    Get PDF
    This is the first study reporting the technique for the 3D visualization of the saphenous veins obtained by CT in living subjects

    Modeling Space-Charge Limited Currents in Organic Semiconductors: Extracting Trap Density and Mobility

    Full text link
    We have developed and applied a mobility edge model that takes into account drift and diffusion currents to characterize the space charge limited current in organic semiconductors. The numerical solution of the drift-diffusion equation allows the utilization of asymmetric contacts to describe the built-in potential within the device. The model has been applied to extract information of the distribution of traps from experimental current-voltage measurements of a rubrene single crystal from Krellner et al. [Phys. Rev. B, 75(24), 245115] showing excellent agreement across several orders of magnitude of current. Although the two contacts are made of the same metal, an energy offset of 580 meV between them, ascribed to differences in the deposition techniques (lamination vs. evaporation) was essential to correctly interpret the shape of the current-voltage characteristics at low voltage. A band mobility 0.13 cm2/Vs for holes was estimated, which is consistent with transport along the long axis of the orthorhombic unit cell. The total density of traps deeper than 0.1 eV was 2.2\times1016 cm-3. The sensitivity analysis and error estimation in the obtained parameters shows that it is not possible to accurately resolve the shape of the trap distribution for energies deeper than 0.3 eV or shallower than 0.1 eV above the valence band edge. The total number of traps deeper than 0.3 eV however can be estimated. Contact asymmetry and the diffusion component of the current play an important role in the description of the device at low bias, and are required to obtain reliable information about the distribution of deep traps
    corecore