121 research outputs found
"On the Road" - Reflections on the Security of Vehicular Communication Systems
Vehicular communication (VC) systems have recently drawn the attention of
industry, authorities, and academia. A consensus on the need to secure VC
systems and protect the privacy of their users led to concerted efforts to
design security architectures. Interestingly, the results different project
contributed thus far bear extensive similarities in terms of objectives and
mechanisms. As a result, this appears to be an auspicious time for setting the
corner-stone of trustworthy VC systems. Nonetheless, there is a considerable
distance to cover till their deployment. This paper ponders on the road ahead.
First, it presents a distillation of the state of the art, covering the
perceived threat model, security requirements, and basic secure VC system
components. Then, it dissects predominant assumptions and design choices and
considers alternatives. Under the prism of what is necessary to render secure
VC systems practical, and given possible non-technical influences, the paper
attempts to chart the landscape towards the deployment of secure VC systems
How to Specify and How to Prove Correctness of Secure Routing Protocols for MANET
Secure routing protocols for mobile ad hoc networks have been developed
recently, yet, it has been unclear what are the properties they achieve, as a
formal analysis of these protocols is mostly lacking. In this paper, we are
concerned with this problem, how to specify and how to prove the correctness of
a secure routing protocol. We provide a definition of what a protocol is
expected to achieve independently of its functionality, as well as
communication and adversary models. This way, we enable formal reasoning on the
correctness of secure routing protocols. We demonstrate this by analyzing two
protocols from the literature
Privacy in Inter-Vehicular Networks: Why simple pseudonym change is not enough
Inter-vehicle communication (IVC) systems disclose rich location information about vehicles. State-of-the-art security architectures are aware of the problem and provide privacy enhancing mechanisms, notably pseudonymous authentication. However, the granularity and the amount of location information IVC protocols divulge, enable an adversary that eavesdrops all traffic throughout an area, to reconstruct long traces of the whereabouts of the majority of vehicles within the same area. Our analysis in this paper confirms the existence of this kind of threat. As a result, it is questionable if strong location privacy is achievable in IVC systems against a powerful adversary.\u
VANET Connectivity Analysis
Vehicular Ad Hoc Networks (VANETs) are a peculiar subclass of mobile ad hoc
networks that raise a number of technical challenges, notably from the point of
view of their mobility models. In this paper, we provide a thorough analysis of
the connectivity of such networks by leveraging on well-known results of
percolation theory. By means of simulations, we study the influence of a number
of parameters, including vehicle density, proportion of equipped vehicles, and
radio communication range. We also study the influence of traffic lights and
roadside units. Our results provide insights on the behavior of connectivity.
We believe this paper to be a valuable framework to assess the feasibility and
performance of future applications relying on vehicular connectivity in urban
scenarios
Secure Vehicular Communication Systems: Implementation, Performance, and Research Challenges
Vehicular Communication (VC) systems are on the verge of practical
deployment. Nonetheless, their security and privacy protection is one of the
problems that have been addressed only recently. In order to show the
feasibility of secure VC, certain implementations are required. In [1] we
discuss the design of a VC security system that has emerged as a result of the
European SeVeCom project. In this second paper, we discuss various issues
related to the implementation and deployment aspects of secure VC systems.
Moreover, we provide an outlook on open security research issues that will
arise as VC systems develop from today's simple prototypes to full-fledged
systems
Discovery and Verification of Neighbor Positions in Mobile Ad Hoc Networks
A growing number of ad hoc networking protocols and location-aware services require that mobile nodes learn the position of their neighbors. However, such a process can be easily abused or disrupted by adversarial nodes. In absence of a-priori trusted nodes, the discovery and verification of neighbor positions presents challenges that have been scarcely investigated in the literature. In this paper, we address this open issue by proposing a fully-distributed cooperative solution that is robust against independent and colluding adversaries, and can be impaired only by an overwhelming presence of adversaries. Results show that our protocol can thwart more than 99% of the attacks under the best possible conditions for the adversaries, with minimal false positive rates
Formal Analysis of V2X Revocation Protocols
Research on vehicular networking (V2X) security has produced a range of
security mechanisms and protocols tailored for this domain, addressing both
security and privacy. Typically, the security analysis of these proposals has
largely been informal. However, formal analysis can be used to expose flaws and
ultimately provide a higher level of assurance in the protocols.
This paper focusses on the formal analysis of a particular element of
security mechanisms for V2X found in many proposals: the revocation of
malicious or misbehaving vehicles from the V2X system by invalidating their
credentials. This revocation needs to be performed in an unlinkable way for
vehicle privacy even in the context of vehicles regularly changing their
pseudonyms. The REWIRE scheme by Forster et al. and its subschemes BASIC and
RTOKEN aim to solve this challenge by means of cryptographic solutions and
trusted hardware.
Formal analysis using the TAMARIN prover identifies two flaws with some of
the functional correctness and authentication properties in these schemes. We
then propose Obscure Token (OTOKEN), an extension of REWIRE to enable
revocation in a privacy preserving manner. Our approach addresses the
functional and authentication properties by introducing an additional key-pair,
which offers a stronger and verifiable guarantee of successful revocation of
vehicles without resolving the long-term identity. Moreover OTOKEN is the first
V2X revocation protocol to be co-designed with a formal model.Comment: 16 pages, 4 figure
Secure Communication in Vehicular Networks - PRESERVE Demo
Security and privacy are fundamental prerequisites for the deployment of vehicular communications. The near-deployment status of Safety Applications for Intelligent Transport Systems (ITS) calls for strong evidence on the applicability of proposed research solutions, notably close-to-reality situations and field-operational trials. The contribution of our work is in this direction: We present a demonstration of the integration and the interoperability among components and security mechanisms coming from different Research and Development projects, as per the PRESERVE project. In fact, we show that the components of the SeVeCom and EVITA projects with the PRESERVE architecture lead to strong and practical security and privacy solutions for Vehicular Ad-hoc Networks (VANETs)
A Bandwidth Sharing Approach to Improve Licensed Spectrum Utilization
The spectrum of deployed wireless cellular communication systems is found to be underutilized, even though licensed spectrum is at a premium. To efficiently utilize the bandwidth left unused in a cellular system, the primary system (PRI), we propose an overlaid ad hoc secondary network (ASN) architecture, with the ASN operating over the resources left unutilized by the PRI. Our basic design principle is that the ASNoperates in a nonintrusive manner and does not interact with the PRI. In this article we present the ad hoc secondary medium access control (AS-MAC) protocol to enable PRI-SEC interoperation, address a number of technical challenges pertinent to this networking environment, and evaluate the performance of the AS-MAC. In a single-hop ASN the AS-MAC transparently utilizes 75 percent of the bandwidth left unused by the PRI, while in multihop ASNs, due to spatial reuse, the AS-MAC can utilize up to 132 percent of the idle PRI resources in our experiments
- âŠ