436 research outputs found
Quantum detection of electronic flying qubits
We consider a model of a detector of ballistic electrons at the edge of a
two-dimensional electron gas in the integer quantum Hall regime. The electron
is detected by capacitive coupling to a gate which is also coupled to a passive
RC circuit. Using a quantum description of this circuit, we determine the
signal over noise ratio of the detector in term of the detector
characteristics. The back-action of the detector on the incident wavepacket is
then computed using a Feynman-Vernon influence functional approach. Using
information theory, we define the appropriate notion of quantum limit for such
an "on the fly" detector. We show that our particular detector can approach the
quantum limit up to logarithms in the ratio of the measurement time over the RC
relaxation time. We argue that such a weak logarithmic effect is of no
practical significance. Finally we show that a two-electron interference
experiment can be used to probe the detector induced decoherence.Comment: 15 pages, 7 figures, published versio
Dephasing due to nonstationary 1/f noise
Motivated by recent experiments with Josephson qubits we propose a new
phenomenological model for 1/f noise due to collective excitations of
interacting defects in the qubit's environment. At very low temperatures the
effective dynamics of these collective modes are very slow leading to
pronounced non-Gaussian features and nonstationarity of the noise. We analyze
the influence of this noise on the dynamics of a qubit in various regimes and
at different operation points. Remarkable predictions are absolute time
dependences of a critical coupling and of dephasing in the strong coupling
regime.Comment: 4 pages, 2 figures, to be published in the proceedings of the Vth
Rencontres de Moriond in Mesoscopic Physic
Fractionalization of minimal excitations in integer quantum Hall edge channels
A theoretical study of the single electron coherence properties of Lorentzian
and rectangular pulses is presented. By combining bosonization and the Floquet
scattering approach, the effect of interactions on a periodic source of voltage
pulses is computed exactly. When such excitations are injected into one of the
channels of a system of two copropagating quantum Hall edge channels, they
fractionalize into pulses whose charge and shape reflects the properties of
interactions. We show that the dependence of fractionalization induced
electron/hole pair production in the pulses amplitude contains clear signatures
of the fractionalization of the individual excitations. We propose an
experimental setup combining a source of Lorentzian pulses and an Hanbury Brown
and Twiss interferometer to measure interaction induced electron/hole pair
production and more generally to reconstruct single electron coherence of these
excitations before and after their fractionalization.Comment: 18 pages, 10 figures, 1 tabl
Two-mode squeezed vacuum and squeezed light in correlated interferometry
We study in detail a system of two interferometers aimed to the detection of
extremely faint phase-fluctuations. This system can represent a breakthrough
for detecting a faint correlated signal that would remain otherwise
undetectable even using the most sensitive individual interferometric devices,
that are limited by the shot noise. If the two interferometers experience
identical phase-fluctuations, like the ones introduced by the so called
"holographic noise", this signal should emerge if their output signals are
correlated, while the fluctuations due to shot noise and other independent
contributions will vanish. We show how the injecting quantum light in the free
ports of the interferometers can reduce the photon noise of the system beyond
the shot-noise, enhancing the resolution in the phase-correlation estimation.
We analyze both the use of two-mode squeezed vacuum or twin-beam state (TWB)
and of two independent squeezing states. Our results basically confirms the
benefit of using squeezed beams together with strong coherent beams in
interferometry, even in this correlated case. However, mainly we concentrate on
the possible use of TWB, discovering interesting and probably unexplored areas
of application of bipartite entanglement and in particular the possibility of
reaching in principle surprising uncertainty reduction
Quantum Correlation Bounds for Quantum Information Experiments Optimization: the Wigner Inequality Case
Violation of modified Wigner inequality by means binary bipartite quantum
system allows the discrimination between the quantum world and the classical
local-realistic one, and also ensures the security of Ekert-like quantum key
distribution protocol. In this paper we study both theoretically and
experimentally the bounds of quantum correlation associated to the modified
Wigner's inequality finding the optimal experimental configuration for its
maximal violation. We also extend this analysis to the implementation of
Ekert's protocol
Toward third order ghost imaging with thermal light
Recently it has been suggested that an enhancement in the visibility of ghost
images obtained with thermal light can be achieved exploiting higher order
correlations [3]. This paper reports on the status of an higher order ghost
imaging experiment carried on at INRIM labs exploiting a pseudo-thermal source
and a CCD camera.Comment: To be published in Proceedings of Recent advances in Foundations of
Quantum Mechanics and Quantum Informatio
Intensity correlations, entanglement properties and ghost imaging in multimode thermal-seeded parametric downconversion: Theory
We address parametric-downconversion seeded by multimode pseudo-thermal
fields. We show that this process may be used to generate multimode pairwise
correlated states with entanglement properties that can be tuned by controlling
the seed intensities. Multimode pseudo-thermal fields seeded
parametric-downconversion represents a novel source of correlated states, which
allows one to explore the classical-quantum transition in pairwise correlations
and to realize ghost imaging and ghost diffraction in regimes not yet explored
by experiments.Comment: 9 pages, 3 figure
- …