3 research outputs found
Heterogeneous Retirement Savings Strategy Selection with Reinforcement Learning
Saving and investment behaviour is crucial for all individuals to guarantee their welfare during work-life and retirement. We introduce a deep reinforcement learning model in which agents learn optimal portfolio allocation and saving strategies suitable for their heterogeneous profiles. The environment is calibrated with occupation- and age-dependent income dynamics. The research focuses on heterogeneous income trajectories dependent on agents’ profiles and incorporates the parameterisation of agents’ behaviours. The model provides a new flexible methodology to estimate lifetime consumption and investment choices for individuals with heterogeneous profiles
Deep Reinforcement Learning for Optimal Investment and Saving Strategy Selection in Heterogeneous Profiles: Intelligent Agents working towards retirement
The transition from defined benefit to defined contribution pension plans shifts the responsibility for saving toward retirement from governments and institutions to the individuals. Determining optimal saving and investment strategy for individuals is paramount for stable financial stance and for avoiding poverty during work-life and retirement, and it is a particularly challenging task in a world where form of employment and income trajectory experienced by different occupation groups are highly diversified. We introduce a model in which agents learn optimal portfolio allocation and saving strategies that are suitable for their heterogeneous profiles. We use deep reinforcement learning to train agents. The environment is calibrated with occupation and age dependent income evolution dynamics. The research focuses on heterogeneous income trajectories dependent on agent profiles and incorporates the behavioural parameterisation of agents. The model provides a flexible methodology to estimate lifetime consumption and investment choices for heterogeneous profiles under varying scenarios
A generative model for age and income distribution
AbstractEach individual in society experiences an evolution of their income during their lifetime. Macroscopically, this dynamic creates a statistical relationship between age and income for each society. In this study, we investigate income distribution and its relationship with age and identify a stable joint distribution function for age and income within the United Kingdom and the United States. We demonstrate a flexible calibration methodology using panel and population surveys and capture the characteristic differences between the UK and the US populations. The model here presented can be utilised for forecasting income and planning pensions.</jats:p