29,276 research outputs found

    The Final Remnant of Binary Black Hole Mergers: Multipolar Analysis

    Full text link
    Methods are presented to define and compute source multipoles of dynamical horizons in numerical relativity codes, extending previous work from the isolated and dynamical horizon formalisms in a manner that allows for the consideration of horizons that are not axisymmetric. These methods are then applied to a binary black hole merger simulation, providing evidence that the final remnant is a Kerr black hole, both through the (spatially) gauge-invariant recovery of the geometry of the apparent horizon, and through a detailed extraction of quasinormal ringing modes directly from the strong-field region.Comment: 12 pages, 13 figures. Published version. Some references have been added and reordered, and the figures cleaned up

    Ion-tracer anemometer

    Get PDF
    Gas velocity measuring instrument measures transport time of ion-trace traveling fixed distance between ionization probe and detector probe. Electric field superimposes drift velocity onto flow velocity so travel times can be reduced to minimize ion diffusion effects

    The absolute photometry of the zodiacal light

    Get PDF
    Absolute photometry of zodiacal ligh

    The Motion of a Body in Newtonian Theories

    Get PDF
    A theorem due to Bob Geroch and Pong Soo Jang ["Motion of a Body in General Relativity." Journal of Mathematical Physics 16(1), (1975)] provides the sense in which the geodesic principle has the status of a theorem in General Relativity (GR). Here we show that a similar theorem holds in the context of geometrized Newtonian gravitation (often called Newton-Cartan theory). It follows that in Newtonian gravitation, as in GR, inertial motion can be derived from other central principles of the theory.Comment: 12 pages, 1 figure. This is the version that appeared in JMP; it is only slightly changed from the previous version, to reflect small issue caught in proo

    Matched filters for coalescing binaries detection on massively parallel computers

    Get PDF
    We discuss some computational problems associated to matched filtering of experimental signals from gravitational wave interferometric detectors in a parallel-processing environment. We then specialize our discussion to the use of the APEmille and apeNEXT processors for this task. Finally, we accurately estimate the performance of an APEmille system on a computational load appropriate for the LIGO and VIRGO experiments, and extrapolate our results to apeNEXT.Comment: 19 pages, 6 figure

    ATLBS Extended Source Sample: The evolution in radio source morphology with flux density

    Get PDF
    Based on the ATLBS survey we present a sample of extended radio sources and derive morphological properties of faint radio sources. 119 radio galaxies form the ATLBS-Extended Source Sample (ATLBS-ESS) consisting of all sources exceeding 30" in extent and integrated flux densities exceeding 1 mJy. We give structural details along with information on galaxy identifications and source classifications. The ATLBS-ESS, unlike samples with higher flux-density limits, has almost equal fractions of FR-I and FR-II radio galaxies with a large fraction of the FR-I population exhibiting 3C31-type structures. Significant asymmetry in lobe extents appears to be a common occurrence in the ATLBS-ESS FR-I sources compared to FR-II sources. We present a sample of 22 FR-Is at z>0.5 with good structural information. The detection of several giant radio sources, with size exceeding 0.7 Mpc, at z>1 suggests that giant radio sources are not less common at high redshifts. The ESS also includes a sample of 28 restarted radio galaxies. The relative abundance of dying and restarting sources is indicative of a model where radio sources undergo episodic activity in which an active phase is followed by a brief dying phase that terminates with restarting of the central activity; in any massive elliptical a few such activity cycles wherein adjacent events blend may constitute the lifetime of a radio source and such bursts of blended activity cycles may be repeated over the age of the host. The ATLBS-ESS includes a 2-Mpc giant radio galaxy with the lowest surface brightness lobes known to date.Comment: 69 pages, 119 figures, 4 tables, to appear in ApJ

    Optimal randomized multilevel algorithms for infinite-dimensional integration on function spaces with ANOVA-type decomposition

    Full text link
    In this paper, we consider the infinite-dimensional integration problem on weighted reproducing kernel Hilbert spaces with norms induced by an underlying function space decomposition of ANOVA-type. The weights model the relative importance of different groups of variables. We present new randomized multilevel algorithms to tackle this integration problem and prove upper bounds for their randomized error. Furthermore, we provide in this setting the first non-trivial lower error bounds for general randomized algorithms, which, in particular, may be adaptive or non-linear. These lower bounds show that our multilevel algorithms are optimal. Our analysis refines and extends the analysis provided in [F. J. Hickernell, T. M\"uller-Gronbach, B. Niu, K. Ritter, J. Complexity 26 (2010), 229-254], and our error bounds improve substantially on the error bounds presented there. As an illustrative example, we discuss the unanchored Sobolev space and employ randomized quasi-Monte Carlo multilevel algorithms based on scrambled polynomial lattice rules.Comment: 31 pages, 0 figure
    corecore