260 research outputs found
Narcolepsy risk loci outline role of T cell autoimmunity and infectious triggers in narcolepsy
Narcolepsy type 1 (NT1) is caused by a loss of hypocretin/orexin transmission. Risk factors include pandemic 2009 H1N1 influenza A infection and immunization with Pandemrix®. Here, we dissect disease mechanisms and interactions with environmental triggers in a multi-ethnic sample of 6,073 cases and 84,856 controls. We fine-mapped GWAS signals within HLA (DQ0602, DQB1*03:01 and DPB1*04:02) and discovered seven novel associations (CD207, NAB1, IKZF4-ERBB3, CTSC, DENND1B, SIRPG, PRF1). Significant signals at TRA and DQB1*06:02 loci were found in 245 vaccination-related cases, who also shared polygenic risk. T cell receptor associations in NT1 modulated TRAJ*24, TRAJ*28 and TRBV*4-2 chain-usage. Partitioned heritability and immune cell enrichment analyses found genetic signals to be driven by dendritic and helper T cells. Lastly comorbidity analysis using data from FinnGen, suggests shared effects between NT1 and other autoimmune diseases. NT1 genetic variants shape autoimmunity and response to environmental triggers, including influenza A infection and immunization with Pandemrix®.</p
The Use of Respiratory Effort Improves an ECG-Based Deep Learning Algorithm to Assess Sleep-Disordered Breathing
BACKGROUND: Sleep apnea is a prevalent sleep-disordered breathing (SDB) condition that affects a large population worldwide. Research has demonstrated the potential of using electrocardiographic (ECG) signals (heart rate and ECG-derived respiration, EDR) to detect SDB. However, EDR may be a suboptimal replacement for respiration signals.METHODS: We evaluated a previously described ECG-based deep learning algorithm in an independent dataset including 198 patients and compared performance for SDB event detection using thoracic respiratory effort versus EDR. We also evaluated the algorithm in terms of apnea-hypopnea index (AHI) estimation performance, and SDB severity classification based on the estimated AHI.RESULTS: Using respiratory effort instead of EDR, we achieved an improved performance in SDB event detection (F1 score = 0.708), AHI estimation (Spearman's correlation = 0.922), and SDB severity classification (Cohen's kappa of 0.62 was obtained based on AHI).CONCLUSION: Respiratory effort is superior to EDR to assess SDB. Using respiratory effort and ECG, the previously described algorithm achieves good performance in a new dataset from an independent laboratory confirming its adequacy for this task.</p
A deep-learning approach to assess respiratory effort with a chest-worn accelerometer during sleep
Objective: The objective is to develop a new deep learning method for the estimation of respiratory effort from a chest-worn accelerometer during sleep. We evaluate performance, compare it against a state-of-the art method, and assess whether it can differentiate between sleep stages. Methods: In 146 participants undergoing overnight polysomnography data were collected from an accelerometer worn on the chest. The study data were partitioned into train, validation, and holdout (test) sets. We used the train and validation sets to generate and train a convolutional neural network and performed model selection respectively, while we used the holdout set (72 participants) to evaluate performance. Results: A convolutional neural network with 9 layers and 207,855 parameters was automatically generated and trained. The neural network significantly outperformed the best performing conventional method, based on Principal Component Analysis; it reduced the Mean Squared Error from 0.26 to 0.11 and it also performed better in the detection of breaths (Sensitivity 98.4 %, PPV 98.2 %). In addition, the neural network exposed significant differences in characteristics of respiratory effort between sleep stages (p < 0.001). Conclusion: The deep learning method predicts respiratory effort with low error and is sensitive and precise in the detection of breaths. In addition, it reproduces differences between sleep stages, which may enable automatic sleep staging, using just a chest-worn accelerometer.</p
Autonomic arousal detection and cardio-respiratory sleep staging improve the accuracy of home sleep apnea tests
Introduction: The apnea-hypopnea index (AHI), defined as the number of apneas and hypopneas per hour of sleep, is still used as an important index to assess sleep disordered breathing (SDB) severity, where hypopneas are confirmed by the presence of an oxygen desaturation or an arousal. Ambulatory polygraphy without neurological signals, often referred to as home sleep apnea testing (HSAT), can potentially underestimate the severity of sleep disordered breathing (SDB) as sleep and arousals are not assessed. We aim to improve the diagnostic accuracy of HSATs by extracting surrogate sleep and arousal information derived from autonomic nervous system activity with artificial intelligence.Methods: We used polysomnographic (PSG) recordings from 245 subjects (148 with simultaneously recorded HSATs) to develop and validate a new algorithm to detect autonomic arousals using artificial intelligence. A clinically validated auto-scoring algorithm (Somnolyzer) scored respiratory events, cortical arousals, and sleep stages in PSGs, and provided respiratory events and sleep stages from cardio-respiratory signals in HSATs. In a four-fold cross validation of the newly developed algorithm, we evaluated the accuracy of the estimated arousal index and HSAT-derived surrogates for the AHI.Results: The agreement between the autonomic and cortical arousal index was moderate to good with an intraclass correlation coefficient of 0.73. When using thresholds of 5, 15, and 30 to categorize SDB into none, mild, moderate, and severe, the addition of sleep and arousal information significantly improved the classification accuracy from 70.2% (Cohen’s κ = 0.58) to 80.4% (κ = 0.72), with a significant reduction of patients where the severity category was underestimated from 18.8% to 7.3%.Discussion: Extracting sleep and arousal information from autonomic nervous system activity can improve the diagnostic accuracy of HSATs by significantly reducing the probability of underestimating SDB severity without compromising specificity
The thought journal app:Designed to confront thoughts that influence sleep
Problems initiating or maintaining sleep are prevalent and impact the quality of life negatively. Negative thinking patterns may perpetuate insomnia by inducing a state of arousal and consequently disrupting sleep. 'Thought challenging' is a common strategy to adopt a positive and peaceful mindset, but requires high awareness to internalize rational reasoning. Regular self-report and feedback may support the acquisition of fundamental reflection skills. We developed a thought journal in a mobile app to facilitate thought challenging. With the app, the users can reflect on daily situations and get visualized summaries as feedback. We carried out one week trial to explore perceived benefit, motivation, user engagement, and its integration with a sleep support tool. The results showed that using the app improved self-reflection skills and visualized summaries are perceived as motivating to log thoughts. </p
Autonomic arousal detection and cardio-respiratory sleep staging improve the accuracy of home sleep apnea tests
Introduction: The apnea-hypopnea index (AHI), defined as the number of apneas and hypopneas per hour of sleep, is still used as an important index to assess sleep disordered breathing (SDB) severity, where hypopneas are confirmed by the presence of an oxygen desaturation or an arousal. Ambulatory polygraphy without neurological signals, often referred to as home sleep apnea testing (HSAT), can potentially underestimate the severity of sleep disordered breathing (SDB) as sleep and arousals are not assessed. We aim to improve the diagnostic accuracy of HSATs by extracting surrogate sleep and arousal information derived from autonomic nervous system activity with artificial intelligence.Methods: We used polysomnographic (PSG) recordings from 245 subjects (148 with simultaneously recorded HSATs) to develop and validate a new algorithm to detect autonomic arousals using artificial intelligence. A clinically validated auto-scoring algorithm (Somnolyzer) scored respiratory events, cortical arousals, and sleep stages in PSGs, and provided respiratory events and sleep stages from cardio-respiratory signals in HSATs. In a four-fold cross validation of the newly developed algorithm, we evaluated the accuracy of the estimated arousal index and HSAT-derived surrogates for the AHI.Results: The agreement between the autonomic and cortical arousal index was moderate to good with an intraclass correlation coefficient of 0.73. When using thresholds of 5, 15, and 30 to categorize SDB into none, mild, moderate, and severe, the addition of sleep and arousal information significantly improved the classification accuracy from 70.2% (Cohen’s κ = 0.58) to 80.4% (κ = 0.72), with a significant reduction of patients where the severity category was underestimated from 18.8% to 7.3%.Discussion: Extracting sleep and arousal information from autonomic nervous system activity can improve the diagnostic accuracy of HSATs by significantly reducing the probability of underestimating SDB severity without compromising specificity
A grounded theory study on the influence of sleep on Parkinson’s symptoms
Contains fulltext :
167717.pdf (publisher's version ) (Open Access)BACKGROUND: Upon awaking, many Parkinson's patients experience an improved mobility, a phenomenon known as 'sleep benefit'. Despite the potential clinical relevance, no objective correlates of sleep benefit exist. The discrepancy between the patients' subjective experience of improvement in absence of objective changes is striking, and raises questions about the nature of sleep benefit. We aimed to clarify what patients reporting subjective sleep benefit, actually experience when waking up. Furthermore, we searched for factors associated with subjective sleep benefit. METHODS: Using a standardized topic list, we interviewed 14 Parkinson patients with unambiguous subjective sleep benefit, selected from a larger questionnaire-based cohort. A grounded theory approach was used to analyse the data. RESULTS: A subset of the participants described a temporary decrease in their Parkinson motor symptoms after sleep. Others did experience beneficial effects which were, however, non-specific for Parkinson's disease (e.g. feeling 'rested'). The last group misinterpreted the selection questionnaire and did not meet the definition of sleep benefit for various reasons. There were no general sleep-related factors that influenced the presence of sleep benefit. Factors mentioned to influence functioning at awakening were mostly stress related. CONCLUSIONS: The group of participants convincingly reporting sleep benefit in the selection questionnaire appeared to be very heterogeneous, with only a portion of them describing sleep benefit on motor symptoms. The group of participants actually experiencing motor sleep benefit may be much smaller than reported in the literature so far. Future studies should employ careful inclusion criteria, which could be based on our reported data
Match and Mismatch between Lived Experiences of Daytime Sleepiness and Diagnostic Instruments:A Qualitative Study amongst Patients with Sleep Disorders
Excessive daytime sleepiness is a common symptom of sleep disorders. Despite its prevalence, it remains difficult to define, detect, and address. The difficulties surrounding sleepiness have been linked to an ambiguous conceptualization, a large variety of scales and measures, and the overlap with other constructs, such as fatigue. The present study aims to investigate patients’ descriptions of sleepiness-related daytime complaints and their phenomenology. We performedsemi-directed interviews with patients diagnosed with obstructive sleep apnea (N = 15) or narcolepsy (N = 5). The interviewers took care of utilizing the participants’ terminology when describing daytime complaints related to their sleep disorder. Various aspects of the daytime complaints were investigated, such as their description and temporality. The transcribed content was thematicallyanalyzed using an eclectic coding system, yielding five themes. The participants used different interchangeable descriptors (tired, sleepy, fatigued, exhausted) to express their daytime complaints. They enriched their description with indexes of magnitude (ranging from ‘not especially’ to ‘most gigantic, extreme’), oppositions to other states (using antipodes like energy, alertness, wakefulness, orrest), and indications of fluctuations over the day. Interestingly, the participants often used metaphors to express their experiences and their struggles. The lived experiences of the patients were found to not always align with common self-reported monitoring tools of sleepiness and to relate only in part with current conceptions. In practice, it is important to probe daytime complaints, such as daytime sleepiness, with a broader consideration, for example, by exploring antipodes, consequences, and time-of-day fluctuations
- …