1,201 research outputs found
Automatic Brain Tumor Segmentation using Cascaded Anisotropic Convolutional Neural Networks
A cascade of fully convolutional neural networks is proposed to segment
multi-modal Magnetic Resonance (MR) images with brain tumor into background and
three hierarchical regions: whole tumor, tumor core and enhancing tumor core.
The cascade is designed to decompose the multi-class segmentation problem into
a sequence of three binary segmentation problems according to the subregion
hierarchy. The whole tumor is segmented in the first step and the bounding box
of the result is used for the tumor core segmentation in the second step. The
enhancing tumor core is then segmented based on the bounding box of the tumor
core segmentation result. Our networks consist of multiple layers of
anisotropic and dilated convolution filters, and they are combined with
multi-view fusion to reduce false positives. Residual connections and
multi-scale predictions are employed in these networks to boost the
segmentation performance. Experiments with BraTS 2017 validation set show that
the proposed method achieved average Dice scores of 0.7859, 0.9050, 0.8378 for
enhancing tumor core, whole tumor and tumor core, respectively. The
corresponding values for BraTS 2017 testing set were 0.7831, 0.8739, and
0.7748, respectively.Comment: 12 pages, 5 figures. MICCAI Brats Challenge 201
Disease Progression Modeling and Prediction through Random Effect Gaussian Processes and Time Transformation
The development of statistical approaches for the joint modelling of the
temporal changes of imaging, biochemical, and clinical biomarkers is of
paramount importance for improving the understanding of neurodegenerative
disorders, and for providing a reference for the prediction and quantification
of the pathology in unseen individuals. Nonetheless, the use of disease
progression models for probabilistic predictions still requires investigation,
for example for accounting for missing observations in clinical data, and for
accurate uncertainty quantification. We tackle this problem by proposing a
novel Gaussian process-based method for the joint modeling of imaging and
clinical biomarker progressions from time series of individual observations.
The model is formulated to account for individual random effects and time
reparameterization, allowing non-parametric estimates of the biomarker
evolution, as well as high flexibility in specifying correlation structure, and
time transformation models. Thanks to the Bayesian formulation, the model
naturally accounts for missing data, and allows for uncertainty quantification
in the estimate of evolutions, as well as for probabilistic prediction of
disease staging in unseen patients. The experimental results show that the
proposed model provides a biologically plausible description of the evolution
of Alzheimer's pathology across the whole disease time-span as well as
remarkable predictive performance when tested on a large clinical cohort with
missing observations.Comment: 13 pages, 2 figure
Part-to-whole Registration of Histology and MRI using Shape Elements
Image registration between histology and magnetic resonance imaging (MRI) is
a challenging task due to differences in structural content and contrast. Too
thick and wide specimens cannot be processed all at once and must be cut into
smaller pieces. This dramatically increases the complexity of the problem,
since each piece should be individually and manually pre-aligned. To the best
of our knowledge, no automatic method can reliably locate such piece of tissue
within its respective whole in the MRI slice, and align it without any prior
information. We propose here a novel automatic approach to the joint problem of
multimodal registration between histology and MRI, when only a fraction of
tissue is available from histology. The approach relies on the representation
of images using their level lines so as to reach contrast invariance. Shape
elements obtained via the extraction of bitangents are encoded in a
projective-invariant manner, which permits the identification of common pieces
of curves between two images. We evaluated the approach on human brain
histology and compared resulting alignments against manually annotated ground
truths. Considering the complexity of the brain folding patterns, preliminary
results are promising and suggest the use of characteristic and meaningful
shape elements for improved robustness and efficiency.Comment: Paper accepted at ICCV Workshop (Bio-Image Computing
The value of hippocampal and temporal horn volumes and rates of change in predicting future conversion to AD.
Hippocampal pathology occurs early in Alzheimer disease (AD), and atrophy, measured by volumes and volume changes, may predict which subjects will develop AD. Measures of the temporal horn (TH), which is situated adjacent to the hippocampus, may also indicate early changes in AD. Previous studies suggest that these metrics can predict conversion from amnestic mild cognitive impairment (MCI) to AD with conversion and volume change measured concurrently. However, the ability of these metrics to predict future conversion has not been investigated. We compared the abilities of hippocampal, TH, and global measures to predict future conversion from MCI to AD. TH, hippocampi, whole brain, and ventricles were measured using baseline and 12-month scans. Boundary shift integral was used to measure the rate of change. We investigated the prediction of conversion between 12 and 24 months in subjects classified as MCI from baseline to 12 months. All measures were predictive of future conversion. Local and global rates of change were similarly predictive of conversion. There was evidence that the TH expansion rate is more predictive than the hippocampal atrophy rate (P=0.023) and that the TH expansion rate is more predictive than the TH volume (P=0.036). Prodromal atrophy rates may be useful predictors of future conversion to sporadic AD from amnestic MCI
Elastic Registration of Geodesic Vascular Graphs
Vascular graphs can embed a number of high-level features, from morphological
parameters, to functional biomarkers, and represent an invaluable tool for
longitudinal and cross-sectional clinical inference. This, however, is only
feasible when graphs are co-registered together, allowing coherent multiple
comparisons. The robust registration of vascular topologies stands therefore as
key enabling technology for group-wise analyses. In this work, we present an
end-to-end vascular graph registration approach, that aligns networks with
non-linear geometries and topological deformations, by introducing a novel
overconnected geodesic vascular graph formulation, and without enforcing any
anatomical prior constraint. The 3D elastic graph registration is then
performed with state-of-the-art graph matching methods used in computer vision.
Promising results of vascular matching are found using graphs from synthetic
and real angiographies. Observations and future designs are discussed towards
potential clinical applications
Spatial calibration of a 2D/3D ultrasound using a tracked needle
PURPOSE: Spatial calibration between a 2D/3D ultrasound and a pose tracking system requires a complex and time-consuming procedure. Simplifying this procedure without compromising the calibration accuracy is still a challenging problem. METHOD: We propose a new calibration method for both 2D and 3D ultrasound probes that involves scanning an arbitrary region of a tracked needle in different poses. This approach is easier to perform than most alternative methods that require a precise alignment between US scans and a calibration phantom. RESULTS: Our calibration method provides an average accuracy of 2.49Â mm for a 2D US probe with 107Â mm scanning depth, and an average accuracy of 2.39Â mm for a 3D US with 107Â mm scanning depth. CONCLUSION: Our method proposes a unified calibration framework for 2D and 3D probes using the same phantom object, work-flow, and algorithm. Our method significantly improves the accuracy of needle-based methods for 2D US probes as well as extends its use for 3D US probes
Robust training of recurrent neural networks to handle missing data for disease progression modeling
Disease progression modeling (DPM) using longitudinal data is a challenging
task in machine learning for healthcare that can provide clinicians with better
tools for diagnosis and monitoring of disease. Existing DPM algorithms neglect
temporal dependencies among measurements and make parametric assumptions about
biomarker trajectories. In addition, they do not model multiple biomarkers
jointly and need to align subjects' trajectories. In this paper, recurrent
neural networks (RNNs) are utilized to address these issues. However, in many
cases, longitudinal cohorts contain incomplete data, which hinders the
application of standard RNNs and requires a pre-processing step such as
imputation of the missing values. We, therefore, propose a generalized training
rule for the most widely used RNN architecture, long short-term memory (LSTM)
networks, that can handle missing values in both target and predictor
variables. This algorithm is applied for modeling the progression of
Alzheimer's disease (AD) using magnetic resonance imaging (MRI) biomarkers. The
results show that the proposed LSTM algorithm achieves a lower mean absolute
error for prediction of measurements across all considered MRI biomarkers
compared to using standard LSTM networks with data imputation or using a
regression-based DPM method. Moreover, applying linear discriminant analysis to
the biomarkers' values predicted by the proposed algorithm results in a larger
area under the receiver operating characteristic curve (AUC) for clinical
diagnosis of AD compared to the same alternatives, and the AUC is comparable to
state-of-the-art AUCs from a recent cross-sectional medical image
classification challenge. This paper shows that built-in handling of missing
values in LSTM network training paves the way for application of RNNs in
disease progression modeling.Comment: 9 pages, 1 figure, MIDL conferenc
Training recurrent neural networks robust to incomplete data: application to Alzheimer's disease progression modeling
Disease progression modeling (DPM) using longitudinal data is a challenging
machine learning task. Existing DPM algorithms neglect temporal dependencies
among measurements, make parametric assumptions about biomarker trajectories,
do not model multiple biomarkers jointly, and need an alignment of subjects'
trajectories. In this paper, recurrent neural networks (RNNs) are utilized to
address these issues. However, in many cases, longitudinal cohorts contain
incomplete data, which hinders the application of standard RNNs and requires a
pre-processing step such as imputation of the missing values. Instead, we
propose a generalized training rule for the most widely used RNN architecture,
long short-term memory (LSTM) networks, that can handle both missing predictor
and target values. The proposed LSTM algorithm is applied to model the
progression of Alzheimer's disease (AD) using six volumetric magnetic resonance
imaging (MRI) biomarkers, i.e., volumes of ventricles, hippocampus, whole
brain, fusiform, middle temporal gyrus, and entorhinal cortex, and it is
compared to standard LSTM networks with data imputation and a parametric,
regression-based DPM method. The results show that the proposed algorithm
achieves a significantly lower mean absolute error (MAE) than the alternatives
with p < 0.05 using Wilcoxon signed rank test in predicting values of almost
all of the MRI biomarkers. Moreover, a linear discriminant analysis (LDA)
classifier applied to the predicted biomarker values produces a significantly
larger AUC of 0.90 vs. at most 0.84 with p < 0.001 using McNemar's test for
clinical diagnosis of AD. Inspection of MAE curves as a function of the amount
of missing data reveals that the proposed LSTM algorithm achieves the best
performance up until more than 74% missing values. Finally, it is illustrated
how the method can successfully be applied to data with varying time intervals.Comment: arXiv admin note: substantial text overlap with arXiv:1808.0550
- …