18 research outputs found
Dynamics of wide binary stars: A case study for testing Newtonian dynamics in the low acceleration regime
Extremely wide binary stars represent ideal systems to probe Newtonian
dynamics in the low acceleration regimes (<10e-10 m/s/s) typical of the
external regions of galaxies. Here we present a study of 60 alleged wide binary
stars with projected separation ranging from 0.004 to 1 pc, probing
gravitational accelerations well below the limit were dark matter or modified
dynamics theories set in. Radial velocities with accuracy ~100 m/s were
obtained for each star, in order to constrain their orbital velocity, that,
together with proper motion data, can distinguish bound from unbound systems.
It was found that about half of the observed pairs do have velocity in the
expected range for bound systems, out to the largest separations probed here.
In particular, we identified five pairs with projected separation >0.15 pc that
are useful for the proposed test. While it would be premature to draw any
conclusion about the validity of Newtonian dynamics at these low accelerations,
our main result is that very wide binary stars seem to exist in the harsh
environment of the solar neighborhood. This could provide a tool to test
Newtonian dynamics versus modified dynamics theories in the low acceleration
conditions typical of galaxies. In the near future the GAIA satellite will
provide data to increase significantly the number of wide pairs that, with the
appropriate follow up spectroscopic observations, will allow the implementation
of this experiment with unprecedented accuracy.Comment: Accepted for publication on International Journal of Modern Physics
Circum-galactic medium in the halo of quasars
The properties of circum-galactic gas in the halo of quasar host galaxies are
investigated analyzing Mg II 2800 and C IV 1540 absorption-line systems along
the line of sight close to quasars. We used optical spectroscopy of closely
aligned pairs of quasars (projected distance 200 kpc, but at very
different redshift) obtained at the VLT and Gran Telescopio Canarias to
investigate the distribution of the absorbing gas for a sample of quasars at
z1. Absorption systems of EW 0.3 associated with the
foreground quasars are revealed up to 200 kpc from the centre of the host
galaxy, showing that the structure of the absorbing gas is patchy with a
covering fraction quickly decreasing beyond 100 kpc. In this contribution we
use optical and near-IR images obtained at VLT to investigate the relations
between the properties of the circum-galactic medium of the host galaxies and
of the large scale galaxy environments of the foreground quasars.Comment: 6 pages, 3 figures, proceedings of the conference "QUASARS at all
cosmic epochs", accepted for publication on Frontiers in Astronomy and Space
Scienc
Circum-Galactic Medium in the Halo of Quasars
The properties of circum-galactic gas in the halo of quasar host galaxies are investigated analyzing Mg II 2800 and C IV 1540 absorption-line systems along the line of sight close to quasars. We used optical spectroscopy of closely aligned pairs of quasars (projected distance = 0.3 associated with the foreground quasars are revealed up to 200 kpc from the centre of the host galaxy, showing that the structure of the absorbing gas is patchy with a covering fraction quickly decreasing beyond 100 kpc. In this contribution we use optical and near-IR images obtained at VLT to investigate the relations between the properties of the circum-galactic medium of the host galaxies and of the large scale galaxy environments of the foreground quasars
Sigh in patients with acute hypoxemic respiratory failure and acute respiratory distress syndrome: the PROTECTION pilot randomized clinical trial
Background: Sigh is a cyclic brief recruitment manoeuvre: previous physiological studies showed that its use could be an interesting addition to pressure support ventilation to improve lung elastance, decrease regional heterogeneity and increase release of surfactant.
Research question: Is the clinical application of sigh during pressure support ventilation (PSV) feasible?
Study design and methods: We conducted a multi-center non-inferiority randomized clinical trial on adult intubated patients with acute hypoxemic respiratory failure or acute respiratory distress syndrome undergoing PSV. Patients were randomized to the No Sigh group and treated by PSV alone, or to the Sigh group, treated by PSV plus sigh (increase of airway pressure to 30 cmH2Ofor 3 seconds once per minute) until day 28 or death or successful spontaneous breathing trial. The primary endpoint of the study was feasibility, assessed as non-inferiority (5% tolerance) in the proportion of patients failing assisted ventilation. Secondary outcomes included safety, physiological parameters in the first week from randomization, 28-day mortality and ventilator-free days.
Results: Two-hundred fifty-eight patients (31% women; median age 65 [54-75] years) were enrolled. In the Sigh group, 23% of patients failed to remain on assisted ventilation vs. 30% in the No Sigh group (absolute difference -7%, 95%CI -18% to 4%; p=0.015 for non-inferiority). Adverse events occurred in 12% vs. 13% in Sigh vs. No Sigh (p=0.852). Oxygenation was improved while tidal volume, respiratory rate and corrected minute ventilation were lower over the first 7 days from randomization in Sigh vs. No Sigh. There was no significant difference in terms of mortality (16% vs. 21%, p=0.342) and ventilator-free days (22 [7-26] vs. 22 [3-25] days, p=0.300) for Sigh vs. No Sigh.
Interpretation: Among hypoxemic intubated ICU patients, application of sigh was feasible and without increased risk
Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study
Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research
Cardiorespiratory coupling in mechanically ventilated patients studied via synchrogram analysis
<p>Ottolina D, Cairo B, Fossali T, Mazzucco C, Castelli A, Rech R, Catena E, Porta A, Colombo R. Cardiorespiratory coupling in mechanically ventilated patients studied via synchrogram analysis. Med Biol Eng Comput. 2023 Jun;61(6):1329-1341. doi: 10.1007/s11517-023-02784-4. Epub 2023 Jan 26. PMID: 36698031.</p>
<h2>Abstract</h2>
<div>
<p>Respiration and cardiac activity are strictly interconnected with reciprocal influences. They act as weakly coupled oscillators showing varying degrees of phase synchronization and their interactions are affected by mechanical ventilation. The study aims at differentiating the impact of three ventilatory modes on the cardiorespiratory phase coupling in critically ill patients. The coupling between respiration and heartbeat was studied through cardiorespiratory phase synchronization analysis carried out via synchrogram during pressure control ventilation (PCV), pressure support ventilation (PSV), and neurally adjusted ventilatory assist (NAVA) in critically ill patients. Twenty patients were studied under all the three ventilatory modes. Cardiorespiratory phase synchronization changed significantly across ventilatory modes. The highest synchronization degree was found during PCV session, while the lowest one with NAVA. The percentage of all epochs featuring synchronization regardless of the phase locking ratio was higher with PCV (median: 33.9%, first-third quartile: 21.3-39.3) than PSV (median: 15.7%; first-third quartile: 10.9-27.8) and NAVA (median: 3.7%; first-third quartile: 3.3-19.2). PCV induces a significant amount of cardiorespiratory phase synchronization in critically ill mechanically ventilated patients. Synchronization induced by patient-driven ventilatory modes was weaker, reaching the minimum with NAVA. Findings can be explained as a result of the more regular and powerful solicitation of the cardiorespiratory system induced by PCV. The degree of phase synchronization between cardiac and respiratory activities in mechanically ventilated humans depends on the ventilatory mode.</p>
</div>
Transesophageal echocardiography in patients with cardiac arrest: from high-quality chest compression to effective resuscitation
Survival after cardiac arrest depends on prompt and effective cardiopulmonary resuscitation (CPR). Transesophageal echocardiography (TEE) can be applied to evaluate the effectiveness of chest compression-decompression maneuvers in the setting of cardiac arrest undergoing CPR. The efficacy of chest compression can be continuously assessed by TEE that can improve the effectiveness of CPR guiding the rescuer to optimize or correct chest compression and decompression by directly examining the movements of the cardiac walls and valve leaflets
Mechanical ventilatory modes and cardioventilatory phase synchronization in acute respiratory failure patients
Cardioventilatory phase synchronization was studied in ten critically ill patients admitted in intensive care unit (ICU) for acute respiratory failure under two mechanical ventilatory modes: (i) pressure controlled ventilation (PCV); (ii) pressure support ventilation (PSV). The two modalities were administered to the same patient in different times in a random order. Cardioventilatory phase interactions were typified by plotting the relative position of a heartbeat, detected from the electrocardiogram and collected in n groups, within m ventilatory cycles as a function of the progressive cardiac beat number via the synchrogram. n:m phase synchronized patterns were detected by computing the variability of each phase group. The percent duration of the recording featuring phase synchronization was assessed as a measure of the strength of phase synchrony and tested against situations of full phase desynchronization between cardiac and ventilatory rhythms. Indexes quantifying the variability of the cardiac and ventilatory activities were computed as well. Findings proved that: (i) a significant presence of n:m phase synchronized patterns was detected in PCV; (ii) the strength of n:m phase synchronization was stronger during PCV than PSV; (iii) different strengths of cardioventilatory phase synchronization detected during PCV and PSV were found in presence of similar heart and ventilatory rates and alike variability. We conclude that mechanical ventilation can induce a significant presence of cardioventilatory phase synchronized patterns and this amount depends on the mode of mechanical ventilation. Future studies should test the eventual link of the level of phase coordination between heart and mechanical ventilation to a clinical outcome to understand whether featuring a certain degree of cardioventilatory phase synchronization is beneficial for the critical patient in ICU