3,815 research outputs found
Shell evolution and nuclear forces
We present a quantitative study of the role played by different components
characterizing the nucleon-nucleon interaction in the evolution of the nuclear
shell structure. It is based on the spin-tensor decomposition of an effective
two-body shell-model interaction and the subsequent study of effective
single-particle energy variations in a series of isotopes or isotones. The
technique allows to separate unambiguously contributions of the central, vector
and tensor components of the realistic effective interaction. We show that
while the global variation of the single-particle energies is due to the
central component of the effective interaction, the characteristic behavior of
spin-orbit partners, noticed recently, is mainly due to its tensor part. Based
on the analysis of a well-fitted realistic interaction in sdpf-shell model
space, we analyze in detail the role played by the different terms in the
formation and/or disappearance of N=16, N=20 and N=28 shell gaps in
neutron-rich nuclei.Comment: 6 pages, 4 figure
Quadrupole Collective Dynamics from Energy Density Functionals: Collective Hamiltonian and the Interacting Boson Model
Microscopic energy density functionals (EDF) have become a standard tool for
nuclear structure calculations, providing an accurate global description of
nuclear ground states and collective excitations. For spectroscopic
applications this framework has to be extended to account for collective
correlations related to restoration of symmetries broken by the static mean
field, and for fluctuations of collective variables. In this work we compare
two approaches to five-dimensional quadrupole dynamics: the collective
Hamiltonian for quadrupole vibrations and rotations, and the Interacting Boson
Model. The two models are compared in a study of the evolution of non-axial
shapes in Pt isotopes. Starting from the binding energy surfaces of
Pt, calculated with a microscopic energy density functional, we
analyze the resulting low-energy collective spectra obtained from the
collective Hamiltonian, and the corresponding IBM-2 Hamiltonian. The calculated
excitation spectra and transition probabilities for the ground-state bands and
the -vibration bands are compared to the corresponding sequences of
experimental states.Comment: 10 pages, 4 figures; to be published in Phys. Rev.
Description of superdeformed nuclei in the interacting boson model
The interacting boson model is extended to describe the spectroscopy of
superdeformed bands. Microscopic structure of the model in the second minimum
is discussed and superdeformed bosons are introduced as the new building
blocks. Solutions of a quadrupole Hamiltonian are implemented through the
expansion method. Effects of the quadrupole parameters on dynamic moment of
inertia and electric quadrupole transition rates are discussed and the results
are used in a description of superdeformed bands in the Hg-Pb and Gd-Dy
regions.Comment: 18 pages revtex, 9 figures available upon reques
Can Africa replicate Asia's green revolution in rice ?
Asia's green revolution in rice was transformational and improved the lives of millions of poor households. Rice has become an increasingly important part of African diets and imports of rice have grown. Agronomists point out that large areas in Africa are well suited for rice and are encouraged by the field tests of new rice varieties. So is Africa poised for its own green revolution in rice? This study reviews the recent literature on rice technologies and their impact on productivity, incomes, and poverty, and compares current conditions in Africa with the conditions that prevailed in Asia as its rice revolution got under way. An important conclusion is that, to a degree, a rice revolution has already begun in Africa. Moreover, many of the same practices that have proved successful in Asia and in Africa can be applied where yields are currently low. At the same time, for many reasons, Africa's rice revolution has been, and will continue to be, characterized by a mosaic of successes, situated where the conditions are right for new technologies to take hold. This can have profound effects in some places. But because diets, markets, and geography are heterogeneous in Africa, the successful transformation of the Africa's rice sector must be matched by productivity gains in other crops to fully launch Africa's Green Revolution.Agricultural Research,Crops&Crop Management Systems,Climate Change and Agriculture,Food&Beverage Industry,Agricultural Knowledge&Information Systems
New mechanism for the enhancement of dominance in interacting boson models
We introduce an exactly solvable model for interacting bosons that extend up
to high spin and interact through a repulsive pairing force. The model exhibits
a phase transition to a state with almost complete dominance. The
repulsive pairing interaction that underlies the model has a natural
microscopic origin in the Pauli exclusion principle between contituent
nucleons. As such, repulsive pairing between bosons seems to provide a new
mechanism for the enhancement of dominance, giving further support for the
validity of the Interacting Boson Model.Comment: 4 pages, 2 figure
Structural evolution in Pt isotopes with the Interacting Boson Model Hamiltonian derived from the Gogny Energy Density Functional
Spectroscopic calculations are carried out, for the description of the
shape/phase transition in Pt nuclei in terms of the Interacting Boson Model
(IBM) Hamiltonian derived from (constrained) Hartree-Fock-Bogoliubov (HFB)
calculations with the finite range and density dependent Gogny-D1S Energy
Density Functional. Assuming that the many-nucleon driven dynamics of nuclear
surface deformation can be simulated by effective bosonic degrees of freedom,
the Gogny-D1S potential energy surface (PES) with quadrupole degrees of freedom
is mapped onto the corresponding PES of the IBM. Using this mapping procedure,
the parameters of the IBM Hamiltonian, relevant to the low-lying quadrupole
collective states, are derived as functions of the number of valence nucleons.
Merits of both Gogny-HFB and IBM approaches are utilized so that the spectra
and the wave functions in the laboratory system are calculated precisely. The
experimental low-lying spectra of both ground-state and side-band levels are
well reproduced. From the systematics of the calculated spectra and the reduced
E2 transition probabilities (E2), the prolate-to-oblate shape/phase
transition is shown to take place quite smoothly as a function of neutron
number in the considered Pt isotopic chain, for which the -softness
plays an essential role. All these spectroscopic observables behave
consistently with the relevant PESs and the derived parameters of the IBM
Hamiltonian as functions of . Spectroscopic predictions are also made for
those nuclei which do not have enough experimental E2 data.Comment: 11 pages, 5 figure
Energetic particle parallel diffusion in a cascading wave turbulence in the foreshock region
International audienceWe study parallel (field-aligned) diffusion of energetic particles in the upstream of the bow shock with test particle simulations. We assume parallel shock geometry of the bow shock, and that MHD wave turbulence convected by the solar wind toward the shock is purely transverse in one-dimensional system with a constant background magnetic field. We use three turbulence models: a homogeneous turbulence, a regular cascade from a large scale to smaller scales, and an inverse cascade from a small scale to larger scales. For the homogeneous model the particle motions along the average field are Brownian motions due to random and isotropic scattering across 90 degree pitch angle. On the other hand, for the two cascade models particle motion is non-Brownian due to coherent and anisotropic pitch angle scattering for finite time scale. The mean free path ?|| calculated by the ensemble average of these particle motions exhibits dependence on the distance from the shock. It also depends on the parameters such as the thermal velocity of the particles, solar wind flow velocity, and a wave turbulence model. For the inverse cascade model, the dependence of ?|| at the shock on the thermal energy is consistent with the hybrid simulation done by Giacalone (2004), but the spatial dependence of ?|| is inconsistent with it
Tests and applications of self-consistent cranking in the interacting boson model
The self-consistent cranking method is tested by comparing the cranking
calculations in the interacting boson model with the exact results obtained
from the SU(3) and O(6) dynamical symmetries and from numerical
diagonalization. The method is used to study the spin dependence of shape
variables in the and boson models. When realistic sets of parameters
are used, both models lead to similar results: axial shape is retained with
increasing cranking frequency while fluctuations in the shape variable
are slightly reduced.Comment: 9 pages, 3 ps figures, Revte
- …