177 research outputs found

    What Your Username Says About You

    Full text link
    Usernames are ubiquitous on the Internet, and they are often suggestive of user demographics. This work looks at the degree to which gender and language can be inferred from a username alone by making use of unsupervised morphology induction to decompose usernames into sub-units. Experimental results on the two tasks demonstrate the effectiveness of the proposed morphological features compared to a character n-gram baseline

    Scientific Information Extraction with Semi-supervised Neural Tagging

    Full text link
    This paper addresses the problem of extracting keyphrases from scientific articles and categorizing them as corresponding to a task, process, or material. We cast the problem as sequence tagging and introduce semi-supervised methods to a neural tagging model, which builds on recent advances in named entity recognition. Since annotated training data is scarce in this domain, we introduce a graph-based semi-supervised algorithm together with a data selection scheme to leverage unannotated articles. Both inductive and transductive semi-supervised learning strategies outperform state-of-the-art information extraction performance on the 2017 SemEval Task 10 ScienceIE task.Comment: accepted by EMNLP 201
    • …
    corecore