4,764 research outputs found
Convergence of generalized MUSCL schemes
Semi-discrete generalizations of the second order extension of Godunov's scheme, known as the MUSCL scheme, are constructed, starting with any three point E scheme. They are used to approximate scalar conservation laws in one space dimension. For convex conservation laws, each member of a wide class is proven to be a convergent approximation to the correct physical solution. Comparison with another class of high resolution convergent schemes is made
The nonconvex multi-dimensional Riemann problem for Hamilton-Jacobi equations
Simple inequalities for the Riemann problem for a Hamilton-Jacobi equation in N space dimension when neither the initial data nor the Hamiltonian need be convex (or concave) are presented. The initial data is globally continuous, affine in each orthant, with a possible jump in normal derivative across each coordinate plane, x sub i = 0. The inequalities become equalities wherever a maxmin equals a minmax and thus an exact closed form solution to this problem is then obtained
Shock capturing finite difference algorithms for supersonic flow past fighter and missile type configurations
The construction of a reliable, shock capturing finite difference method to solve the Euler equations for inviscid, supersonic flow past fighter and missile type configurations is highly desirable. The numerical method must have a firm theoretical foundation and must be robust and efficient. It should be able to treat subsonic pockets in a predominantly supersonic flow. The method must also be easily applicable to the complex topologies of the aerodynamic configuration under consideration. The ongoing approach to this task is described and for steady supersonic flows is presented. This scheme is the basic numerical method. Results of work obtained during previous years are presented
A Topology-Preserving Level Set Method for Shape Optimization
The classical level set method, which represents the boundary of the unknown
geometry as the zero-level set of a function, has been shown to be very
effective in solving shape optimization problems. The present work addresses
the issue of using a level set representation when there are simple geometrical
and topological constraints. We propose a logarithmic barrier penalty which
acts to enforce the constraints, leading to an approximate solution to shape
design problems.Comment: 10 pages, 4 figure
Uniformly high-order accurate non-oscillatory schemes, 1
The construction and the analysis of nonoscillatory shock capturing methods for the approximation of hyperbolic conservation laws was begun. These schemes share many desirable properties with total variation diminishing schemes (TVD), but TVD schemes have at most first order accuracy, in the sense of truncation error, at extreme of the solution. A uniformly second order approximation was constucted, which is nonoscillatory in the sense that the number of extrema of the discrete solution is not increasing in time. This is achieved via a nonoscillatory piecewise linear reconstruction of the solution from its cell averages, time evolution through an approximate solution of the resulting initial value problem, and averaging of this approximate solution over each cell
The discrete one-sided Lipschitz condition for convex scalar conservation laws
Physical solutions to convex scalar conservation laws satisfy a one-sided Lipschitz condition (OSLC) that enforces both the entropy condition and their variation boundedness. Consistency with this condition is therefore desirable for a numerical scheme and was proved for both the Godunov and the Lax-Friedrichs scheme--also, in a weakened version, for the Roe scheme, all of them being only first order accurate. A new, fully second order scheme is introduced here, which is consistent with the OSLC. The modified equation is considered and shows interesting features. Another second order scheme is then considered and numerical results are discussed
Essentially nonoscillatory postprocessing filtering methods
High order accurate centered flux approximations used in the computation of numerical solutions to nonlinear partial differential equations produce large oscillations in regions of sharp transitions. Here, we present a new class of filtering methods denoted by Essentially Nonoscillatory Least Squares (ENOLS), which constructs an upgraded filtered solution that is close to the physically correct weak solution of the original evolution equation. Our method relies on the evaluation of a least squares polynomial approximation to oscillatory data using a set of points which is determined via the ENO network. Numerical results are given in one and two space dimensions for both scalar and systems of hyperbolic conservation laws. Computational running time, efficiency, and robustness of method are illustrated in various examples such as Riemann initial data for both Burgers' and Euler's equations of gas dynamics. In all standard cases, the filtered solution appears to converge numerically to the correct solution of the original problem. Some interesting results based on nonstandard central difference schemes, which exactly preserve entropy, and have been recently shown generally not to be weakly convergent to a solution of the conservation law, are also obtained using our filters
On the convergence of difference approximations to scalar conservation laws
A unified treatment of explicit in time, two level, second order resolution, total variation diminishing, approximations to scalar conservation laws are presented. The schemes are assumed only to have conservation form and incremental form. A modified flux and a viscosity coefficient are introduced and results in terms of the latter are obtained. The existence of a cell entropy inequality is discussed and such an equality for all entropies is shown to imply that the scheme is an E scheme on monotone (actually more general) data, hence at most only first order accurate in general. Convergence for total variation diminishing-second order resolution schemes approximating convex or concave conservation laws is shown by enforcing a single discrete entropy inequality
High resolution schemes and the entropy condition
A systematic procedure for constructing semidiscrete, second order accurate, variation diminishing, five point band width, approximations to scalar conservation laws, is presented. These schemes are constructed to also satisfy a single discrete entropy inequality. Thus, in the convex flux case, convergence is proven to be the unique physically correct solution. For hyperbolic systems of conservation laws, this construction is used formally to extend the first author's first order accurate scheme, and show (under some minor technical hypotheses) that limit solutions satisfy an entropy inequality. Results concerning discrete shocks, a maximum principle, and maximal order of accuracy are obtained. Numerical applications are also presented
- …