4,176 research outputs found
Kondo and Dicke effect in quantum-dots side coupled to a quantum wire
Electron tunneling through quantum-dots side coupled to a quantum wire, in
equilibrium and nonequilibrium Kondo regime, is studied. The mean-field
finite- slave-boson formalism is used to obtain the solution of the problem.
We have found that the transmission spectrum shows a structure with two
anti-resonances localized at the renormalized energies of the quantum dots. The
DOS of the system shows that when the Kondo correlations are dominant there are
two Kondo regimes with its own Kondo temperature. The above behavior of the DOS
can be explained by quantum interference in the transmission through the two
different resonance states of the quantum dots coupled to common leads. This
result is analogous to the Dicke effect in optics. We investigate the many body
Kondo states as a function of the parameters of the system.Comment: 5 figures. To appear in Phys. Rev.
Dynamic instability in resonant tunneling
We show that an instability may be present in resonant tunneling through a
quantum well in one, two and three dimensions, when the resonance lies near the
emitter Fermi level. A simple semiclassical model which simulates the resonance
and the projected density of states by a nonlinear conductor, the Coulomb
barrier by a capacitance, and the time evolution by an iterated map, is used.
The model reproduces the observed hysteresis in such devices, and exhibits a
series of bifurcations leading to fast chaotic current fluctuations.Comment: 7 pages, 2 figure
A terahertz molecular switch
We present time-dependent results describing the current through a molecular
device, modeled as a complex with two active centers connected to leads under
bias. We show that, at a properly adjusted external voltage, a passing
terahertz electromagnetic pulse may cause a transition between states of finite
and negligible current, suggesting that the system might be useful as a
nanoscopic switch in the terahertz range. A phase diagram defining the bias
region in which the transition takes place within a short time is given. As
described, the physical processes involved are of an entirely different nature
than those in ordinary photodetectors.Comment: 4 pages, 5 figures. To appear in Phys. Rev. Let
Bound states in the continuum driven by AC fields
We report the formation of bound states in the continuum driven by AC fields.
This system consists of a quantum ring connected to two leads. An AC side-gate
voltage controls the interference pattern of the electrons passing through the
system. We model the system by two sites in parallel connected to two
semi-infinite lattices. The energy of these sites change harmonically with
time. We obtain the transmission probability and the local density of states at
the ring sites as a function of the parameters that define the system. The
transmission probability displays a Fano profile when the energy of the
incoming electron matches the driving frequency. Correspondingly, the local
density of states presents a narrow peak that approaches a Dirac delta function
in the weak coupling limit. We attribute these features to the presence of
bound states in the continuum.Comment: 5 pages, 3 figure
Enhancing thermoelectric properties of graphene quantum rings
We study the thermoelectric properties of rectangular graphene rings
connected symmetrically or asymmetrically to the leads. A side-gate voltage
applied across the ring allows for the precise control of the electric current
flowing through the system. The transmission coefficient of the rings manifests
Breit-Wigner line-shapes and/or Fano line-shapes, depending on the connection
configuration, the width of nanoribbons forming the ring and the side-gate
voltage. We find that the thermopower and the figure of merit are greatly
enhanced when the chemical potential is tuned close to resonances. Such
enhancement is even more pronounced in the vicinity of Fano like
anti-resonances which can be induced by a side-gate voltage independently of
the geometry. This opens a possibility to use the proposed device as a tunable
thermoelectric generator.Comment: 6 pages, 5 figures, accepted for publication in Physical Review
- …
