4,176 research outputs found

    Kondo and Dicke effect in quantum-dots side coupled to a quantum wire

    Full text link
    Electron tunneling through quantum-dots side coupled to a quantum wire, in equilibrium and nonequilibrium Kondo regime, is studied. The mean-field finite-UU slave-boson formalism is used to obtain the solution of the problem. We have found that the transmission spectrum shows a structure with two anti-resonances localized at the renormalized energies of the quantum dots. The DOS of the system shows that when the Kondo correlations are dominant there are two Kondo regimes with its own Kondo temperature. The above behavior of the DOS can be explained by quantum interference in the transmission through the two different resonance states of the quantum dots coupled to common leads. This result is analogous to the Dicke effect in optics. We investigate the many body Kondo states as a function of the parameters of the system.Comment: 5 figures. To appear in Phys. Rev.

    Dynamic instability in resonant tunneling

    Full text link
    We show that an instability may be present in resonant tunneling through a quantum well in one, two and three dimensions, when the resonance lies near the emitter Fermi level. A simple semiclassical model which simulates the resonance and the projected density of states by a nonlinear conductor, the Coulomb barrier by a capacitance, and the time evolution by an iterated map, is used. The model reproduces the observed hysteresis in such devices, and exhibits a series of bifurcations leading to fast chaotic current fluctuations.Comment: 7 pages, 2 figure

    A terahertz molecular switch

    Full text link
    We present time-dependent results describing the current through a molecular device, modeled as a complex with two active centers connected to leads under bias. We show that, at a properly adjusted external voltage, a passing terahertz electromagnetic pulse may cause a transition between states of finite and negligible current, suggesting that the system might be useful as a nanoscopic switch in the terahertz range. A phase diagram defining the bias region in which the transition takes place within a short time is given. As described, the physical processes involved are of an entirely different nature than those in ordinary photodetectors.Comment: 4 pages, 5 figures. To appear in Phys. Rev. Let

    Bound states in the continuum driven by AC fields

    Get PDF
    We report the formation of bound states in the continuum driven by AC fields. This system consists of a quantum ring connected to two leads. An AC side-gate voltage controls the interference pattern of the electrons passing through the system. We model the system by two sites in parallel connected to two semi-infinite lattices. The energy of these sites change harmonically with time. We obtain the transmission probability and the local density of states at the ring sites as a function of the parameters that define the system. The transmission probability displays a Fano profile when the energy of the incoming electron matches the driving frequency. Correspondingly, the local density of states presents a narrow peak that approaches a Dirac delta function in the weak coupling limit. We attribute these features to the presence of bound states in the continuum.Comment: 5 pages, 3 figure

    Enhancing thermoelectric properties of graphene quantum rings

    Get PDF
    We study the thermoelectric properties of rectangular graphene rings connected symmetrically or asymmetrically to the leads. A side-gate voltage applied across the ring allows for the precise control of the electric current flowing through the system. The transmission coefficient of the rings manifests Breit-Wigner line-shapes and/or Fano line-shapes, depending on the connection configuration, the width of nanoribbons forming the ring and the side-gate voltage. We find that the thermopower and the figure of merit are greatly enhanced when the chemical potential is tuned close to resonances. Such enhancement is even more pronounced in the vicinity of Fano like anti-resonances which can be induced by a side-gate voltage independently of the geometry. This opens a possibility to use the proposed device as a tunable thermoelectric generator.Comment: 6 pages, 5 figures, accepted for publication in Physical Review
    corecore