33 research outputs found
Automated Network Service Scaling in NFV: Concepts, Mechanisms and Scaling Workflow
Next-generation systems are anticipated to be digital platforms supporting
innovative services with rapidly changing traffic patterns. To cope with this
dynamicity in a cost-efficient manner, operators need advanced service
management capabilities such as those provided by NFV. NFV enables operators to
scale network services with higher granularity and agility than today. For this
end, automation is key. In search of this automation, the European
Telecommunications Standards Institute (ETSI) has defined a reference NFV
framework that make use of model-driven templates called Network Service
Descriptors (NSDs) to operate network services through their lifecycle. For the
scaling operation, an NSD defines a discrete set of instantiation levels among
which a network service instance can be resized throughout its lifecycle. Thus,
the design of these levels is key for ensuring an effective scaling. In this
article, we provide an overview of the automation of the network service
scaling operation in NFV, addressing the options and boundaries introduced by
ETSI normative specifications. We start by providing a description of the NSD
structure, focusing on how instantiation levels are constructed. For
illustrative purposes, we propose an NSD for a representative NS. This NSD
includes different instantiation levels that enable different ways to
automatically scale this NS. Then, we show the different scaling procedures the
NFV framework has available, and how it may automate their triggering. Finally,
we propose an ETSI-compliant workflow to describe in detail a representative
scaling procedure. This workflow clarifies the interactions and information
exchanges between the functional blocks in the NFV framework when performing
the scaling operation.Comment: This work has been accepted for publication in the IEEE
Communications Magazin
A model-based approach to multi-domain monitoring data aggregation
The essential propellant for any closed-loop management mechanism is data related to the managed entity. While this is a general evidence, it becomes even more true when dealing with advanced closed-loop systems like the ones supported by Artificial Intelligence (AI), as they require a trustworthy, up-to-date and steady flow of state data to be applicable. Modern network infrastructures provide a vast amount of disparate data sources, especially in the multi-domain scenarios considered by the ETSI Industry Specification Group (ISG) Zero Touch Network and Service Management (ZSM) framework, and proper mechanisms for data aggregation, pre-processing and normalization are required to make possible AI-enabled closed-loop management. So far, solutions proposed for these data aggregation tasks have been specific to concrete data sources and consumers, following ad-hoc approaches unsuitable to address the vast heterogeneity of data sources and potential data consumers. This paper presents a model-based approach to a data aggregator framework, relying on standardized data models and telemetry protocols, and integrated with an open-source network orchestration stack to support their incorporation within network service lifecycles.The research leading to these results received funding from the European Union’s Horizon 2020 research and innovation programme under grant agree-ment no 871808 (INSPIRE-5Gplus) and no. 856709 (5GROWTH). The paper reflects only the authors’ views. The Commission is not responsible for any use that may be made of the information it contains
Investigation of the use of luminescent markers as gunshot residue indicators
The addition of luminescent markers into ammunition cartridges is an appealing proposal to achieve a greater individual identification of the ammunition. The lanthanide elements present in these luminescent materials act as characteristic chemical markers that, also, offer the great benefit of making gunshot residues (GSR) collection easier. In this work, conventional ammunition cartridges tagged with two types of luminescent markers were shot. Then, the particles produced were visualized under UV light on the floor, clothing targets and the shooter. The luminescent particles spread over the floor determined the shooter position and the bullet trajectory. The illumination of the shot targets allows the visualization of the GSR patterns only using a portable UV lamp, avoiding the use of colorimetric test. The GSR particles were collected and subjected to SEM-EDX and Raman spectroscopy analysis to get information about their inorganic and organic composition. The results indicated that part of the marker and the GSR merge and travel together. With this, particles composed by the marker and propellant organic compounds can be identified by Raman spectroscopy, and the unequivocal identification of the GSR and the marker can be achieved by SEM-EDX. Consequently, the luminescent particles detected under UV light improve the evidence collection and offer information about the GSR and the marker.Ministerio de EconomĂa y Competitividad (MINECO
The Isolation Concept in the 5G Network Slicing
The fifth generation (5G) of cellular networks shall host a number of tenants and provide services tailored to meet a wide range of requirements in terms of performance, dependability and security. Network slicing will be a key enabler, by assigning dedicated resources and functionalities to meet such requirements, where the isolation between slices, i.e., that a slice may operate without interference from other slices, becomes a core issue. The objective of this paper is to give a thorough insight into the isolation concept, discuss the challenges involved in providing it, and outline the means available to provide various levels of isolation. Fundamental concepts that can be used in further work to build an isolation solution tailored to specific needs. This paper defines important concepts such as the Provider Management, the Tenant Management, and the Means of Isolation in the context of the Isolation Dimensions. The conclusion of the study is that dealing with isolation between slices needs extensions in state of the art on the mentioned concepts, and in how to tailor the isolation to meet the needs in a cost-efficiency manner.acceptedVersio
Multi-domain solutions for the deployment of private 5G networks
Private 5G networks have become a popular choice of various vertical industries to build dedicated and secure wireless networks in industry environments to deploy their services with enhanced service flexibility and device connectivity to foster industry digitalization. This article proposes multiple multi-domain solutions to deploy private 5G networks for vertical industries across their local premises and interconnecting them with the public networks. Such scenarios open up a new market segment for various stakeholders, and break the current operators' business and service provisioning models. This, in turn, demands new interactions among the different stakeholders across their administrative domains. To this aim, three distinct levels of multi-domain solutions for deploying vertical's 5G private networks are proposed in this work, which can support interactions at different layers among various stakeholders, allowing for distinct levels of service exposure and control. Building on a set of industry verticals (comprising Industry 4.0, Transportation and Energy), different deployment models are analyzed and the proposed multi-domain solutions are applied. These solutions are implemented and validated through two proof-of-concept prototypes integrating a 5G private network platform (5Growth platform) with public ones. These solutions are being implemented in three vertical pilots conducted with real industry verticals. The obtained results demonstrated the feasibility of the proposed multi-domain solutions applied at the three layers of the system enabling various levels of interactions among the different stakeholders. The achieved end-to-end service instantiation time across multiple domains is in the range of minutes, where the delay impact caused by the resultant multi-domain interactions is considerably low. The proposed multi-domain approaches offer generic solutions and standard interfaces to support the different private network deployment models.This work was supported in part by the European Commission (EC) H2020 5GPPP 5Growth Project under Grant 856709, and in part by the H2020 5G European Validation platform for Extensive trials (5G EVE) Project under Grant 815074
5Growth: An end-to-end service platform for automated deployment and management of vertical services over 5G networks
This article introduces the key innovations of the 5Growth service platform to empower vertical industries with an AI-driven automated 5G end-to-end slicing solution that allows industries to achieve their service requirements. Specifically, we present multiple vertical pilots (Industry 4.0, transportation, and energy), identify the key 5G requirements to enable them, and analyze existing technical and functional gaps as compared to current solutions. Based on the identified gaps, we propose a set of innovations to address them with: (i) support of 3GPP-based RAN slices by introducing a RAN slicing model and providing automated RAN orchestration and control; (ii) an AI-driven closed-loop for automated service management with service level agreement assurance; and (iii) multi-domain solutions to expand service offerings by aggregating services and resources from different provider domains and also enable the integration of private 5G networks with public networks.This work has been partially supported by EC H2020 5GPPP 5Growth project (Grant 856709)
5G-CLARITY : 5G-advanced private networks integrating 5GNR, WiFi, and LiFi
The future of the manufacturing industry highly depends on digital systems that transform existing production and monitoring systems into autonomous systems fulfilling stringent requirements in terms of availability, reliability, security, low latency, and positioning with high accuracy. In order to meet such requirements, private 5G networks are considered as a key enabling technology. In this article, we introduce the 5G-CLARITY system that integrates 5GNR, WiFi, and LiFi access networks, and develops novel management enablers to operate 5G-Advanced private networks. We describe three core features of 5G-CLARITY, including a multi-connectivity framework, a high-precision positioning server, and a management system to orchestrate private network slices. These features are evaluated by means of packet-level simulations and an experimental testbed demonstrating the ability of 5G-CLARITY to police access network traffic, to achieve centimeter-level positioning accuracy, and to provision private network slices in less than one minute
Intelligent optimization and machine learning for 5G network control and management
The adoption of Software Define Networking (SDN), Network Function Virtualization (NFV) and Machine Learning (ML) will play a key role in the control and management of 5G network slices to fulfill the specific requirements of application/services and the new requirements of fifth generation (5G) networks. In this research, we propose a distributed architecture to perform network analytics applying ML techniques in the context of network operation and control of 5G networks.Peer ReviewedPostprint (published version