24 research outputs found
Π ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠΈΡΠΎΠ΄Π΅ Π³ΡΠ°Π²ΠΈΡΠ°ΡΠΈΠΈ
According to the results of our previous research, the accelerated motions of particles by inertia give rise to the attractive force between particles. In this article the usual free-fall laws of a small trial body on surface of the large one are inferred from the accelerated inertial motions concept. Thus, the simple physical explanation for gravitation phenomenon is found, without using the hypothesis that a special force field exists as a property intrinsically inherent to substance particles, and also without using the concept of gravitational mass and the principle of equivalence of inertial and gravitational masses. The results obtained allow one to conclude that the physical nature of gravitation is uncovered: the reason of gravitation is the accelerated motions of particles by inertia. The foundation is laid for the theory of gravitation as a physical one. The Newtonian theory of gravitation is an approximate, phenomenological theory, which is valid only on certain conditions. The physical meaning of gravitation constant Ξ³ is elucidated. The numerical estimate of the magnitude of Ξ³ made with the formula obtained in the paper is in good agreement with observational data. According to the results of observations performed at different years, the value of Ξ³ varies with time. This is due to the fact that Ξ³ is not a fundamental constant, but a quantity that depends on parameters which define the celestial bodies motion and undergo small fluctuations in the course of time. An arbitrary motion of classical particle is a linear combination of two motions: the accelerated motion by inertia Dinertial, taking place without any expenditures of energy, and the forced motion Dforced, taking place under the influence of an external force. Superposition of the forces, generated by accelerated motions by inertia in multiparticle systems, leads to appearance of a special force field which plays the role of a physical medium inseparable from paticles. The knowledge of the mechanism of formation of the medium allows one to describe its physical properties and to explore its behaviour and interaction with the particles generating it. Out of the non-enumerable set of motions being described by linear combination of motions Dinertial and Dforced, a single motion Dforced is taken into account in Newtonian mechanics. Thus, the continuum of motions drops out of the field of view of mechanics - such is the degree of incompleteness of the Newtonian scheme of mechanics as the research technique of nature. The type of the equation of motion describing the perturbation of physical system, being in a state of accelerated motion by inertia, under the action of external force is established. It is shown that various co-ordinate systems as the analysers of motion are physically noncompletely equivalent in respect to the accelerated motions by inertia. It is due to the fact that the physical content of the concept of degree of freedom of particle appears to be different in various co-ordinate systems.Π‘ΠΎΠ³Π»Π°ΡΠ½ΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ, Π²ΡΠΏΠΎΠ»Π½Π΅Π½Π½ΡΡ
Π² Π½Π°ΡΠΈΡ
ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠΈΡ
ΡΠ°Π±ΠΎΡΠ°Ρ
, ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ°ΡΡΠΈΡ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ ΠΏΡΠΈΠ²ΠΎΠ΄ΡΡ ΠΊ ΠΏΠΎΡΠ²Π»Π΅Π½ΠΈΡ ΡΠΈΠ»Ρ ΠΏΡΠΈΡΡΠΆΠ΅Π½ΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ°ΡΡΠΈΡΠ°ΠΌΠΈ. Π Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΠ΅ ΠΈΠ· ΠΊΠΎΠ½ΡΠ΅ΠΏΡΠΈΠΈ ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΡ
Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ Π²ΡΠ²Π΅Π΄Π΅Π½Ρ ΠΎΠ±ΡΡΠ½ΡΠ΅ Π·Π°ΠΊΠΎΠ½Ρ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠ°Π΄Π΅Π½ΠΈΡ Π½Π΅Π±ΠΎΠ»ΡΡΠΎΠ³ΠΎ ΠΏΡΠΎΠ±Π½ΠΎΠ³ΠΎ ΡΠ΅Π»Π° Π½Π° ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΡ ΠΌΠ°ΡΡΠΈΠ²Π½ΠΎΠ³ΠΎ. ΠΠ°ΠΉΠ΄Π΅Π½ΠΎ, ΡΠ°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΏΡΠΎΡΡΠΎΠ΅ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΠ±ΡΡΡΠ½Π΅Π½ΠΈΠ΅ ΡΠ²Π»Π΅Π½ΠΈΡ Π³ΡΠ°Π²ΠΈΡΠ°ΡΠΈΠΈ, Π½Π΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΠ΅Π΅ Π³ΠΈΠΏΠΎΡΠ΅Π·Ρ ΠΎ ΡΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΠΈ ΠΎΡΠΎΠ±ΠΎΠ³ΠΎ ΡΠΈΠ»ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ ΠΊΠ°ΠΊ ΡΠ²ΠΎΠΉΡΡΠ²Π°, Π²Π½ΡΡΡΠ΅Π½Π½Π΅ ΠΏΡΠΈΡΡΡΠ΅Π³ΠΎ ΡΠ°ΡΡΠΈΡΠ°ΠΌ Π²Π΅ΡΠ΅ΡΡΠ²Π°, Π° ΡΠ°ΠΊΠΆΠ΅ Π½Π΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΠ΅Π΅ ΠΏΠΎΠ½ΡΡΠΈΠ΅ Π³ΡΠ°Π²ΠΈΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΠΌΠ°ΡΡΡ ΠΈ ΠΏΡΠΈΠ½ΡΠΈΠΏ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΡΡΠΈ ΠΈΠ½Π΅ΡΡΠ½ΠΎΠΉ ΠΈ Π³ΡΠ°Π²ΠΈΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΠΌΠ°ΡΡ. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ Π·Π°ΠΊΠ»ΡΡΠΈΡΡ, ΡΡΠΎ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΏΡΠΈΡΠΎΠ΄Π° Π³ΡΠ°Π²ΠΈΡΠ°ΡΠΈΠΈ ΡΠ°ΡΠΊΡΡΡΠ°: ΠΏΡΠΈΡΠΈΠ½ΠΎΠΉ Π³ΡΠ°Π²ΠΈΡΠ°ΡΠΈΠΈ ΡΠ²Π»ΡΡΡΡΡ ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ°ΡΡΠΈΡ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ. ΠΠ°Π»ΠΎΠΆΠ΅Π½ ΡΡΠ½Π΄Π°ΠΌΠ΅Π½Ρ ΡΠ΅ΠΎΡΠΈΠΈ ΡΡΠ³ΠΎΡΠ΅Π½ΠΈΡ ΠΊΠ°ΠΊ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΎΡΠΈΠΈ. ΠΡΡΡΠΎΠ½ΠΎΠ²ΡΠΊΠ°Ρ ΡΠ΅ΠΎΡΠΈΡ Π³ΡΠ°Π²ΠΈΡΠ°ΡΠΈΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½ΠΎΠΉ, ΡΠ΅Π½ΠΎΠΌΠ΅Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΎΡΠΈΠ΅ΠΉ, ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ²ΠΎΠΉ Π»ΠΈΡΡ ΠΏΡΠΈ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΡ
ΡΡΠ»ΠΎΠ²ΠΈΠΉ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» Π³ΡΠ°Π²ΠΈΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ Ξ³. Π§ΠΈΡΠ»Π΅Π½Π½Π°Ρ ΠΎΡΠ΅Π½ΠΊΠ° Π²Π΅Π»ΠΈΡΠΈΠ½Ρ c ΠΏΠΎ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠΉ Π² ΡΠ°Π±ΠΎΡΠ΅ ΡΠΎΡΠΌΡΠ»Π΅ Ρ
ΠΎΡΠΎΡΠΎ ΡΠΎΠ³Π»Π°ΡΡΠ΅ΡΡΡ Ρ Π΄Π°Π½Π½ΡΠΌΠΈ Π½Π°Π±Π»ΡΠ΄Π΅Π½ΠΈΠΉ. Π‘ΠΎΠ³Π»Π°ΡΠ½ΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌ Π½Π°Π±Π»ΡΠ΄Π΅Π½ΠΈΠΉ, ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΡΡ
Π² ΡΠ°Π·Π½ΡΠ΅ Π³ΠΎΠ΄Ρ, Π²Π΅Π»ΠΈΡΠΈΠ½Π° Ξ³ ΡΠΎ Π²ΡΠ΅ΠΌΠ΅Π½Π΅ΠΌ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ. ΠΡΠΎ ΠΎΠ±ΡΡΡΠ½ΡΠ΅ΡΡΡ ΡΠ΅ΠΌ, ΡΡΠΎ Ξ³ - Π½Π΅ ΡΡΠ½Π΄Π°ΠΌΠ΅Π½ΡΠ°Π»ΡΠ½Π°Ρ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΠ°, Π° Π²Π΅Π»ΠΈΡΠΈΠ½Π°, Π·Π°Π²ΠΈΡΡΡΠ°Ρ ΠΎΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π½Π΅Π±Π΅ΡΠ½ΡΡ
ΡΠ΅Π», ΠΊΠΎΡΠΎΡΡΠ΅ Ρ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΈΡΠΏΡΡΡΠ²Π°ΡΡ Π½Π΅Π±ΠΎΠ»ΡΡΠΈΠ΅ ΡΠ»ΡΠΊΡΡΠ°ΡΠΈΠΈ. ΠΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ°ΡΡΠΈΡΡ ΡΠ²Π»ΡΠ΅ΡΡΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΠ΅ΠΉ Π΄Π²ΡΡ
Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ: ΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ DΠΈΠ½Π΅ΡΡ, ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΡΡΠ΅Π³ΠΎ Π±Π΅Π· ΠΊΠ°ΠΊΠΈΡ
-Π»ΠΈΠ±ΠΎ Π·Π°ΡΡΠ°Ρ ΡΠ½Π΅ΡΠ³ΠΈΠΈ, ΠΈ Π²ΡΠ½ΡΠΆΠ΄Π΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ DΠ²ΡΠ½ΡΠΆΠ΄, ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΡΡΠ΅Π³ΠΎ ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ Π²Π½Π΅ΡΠ½Π΅ΠΉ ΡΠΈΠ»Ρ. Π‘ΡΠΏΠ΅ΡΠΏΠΎΠ·ΠΈΡΠΈΡ ΡΠΈΠ», ΠΏΠΎΡΠΎΠΆΠ΄Π°Π΅ΠΌΡΡ
Π² ΠΌΠ½ΠΎΠ³ΠΎΡΠ°ΡΡΠΈΡΠ½ΡΡ
ΡΠΈΡΡΠ΅ΠΌΠ°Ρ
ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΠΌΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡΠΌΠΈ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ, ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΠΏΠΎΡΠ²Π»Π΅Π½ΠΈΡ ΠΎΡΠΎΠ±ΠΎΠ³ΠΎ ΡΠΈΠ»ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΈΠ³ΡΠ°Π΅Ρ ΡΠΎΠ»Ρ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ΅Π΄Ρ, Π½Π΅ΠΎΡΠ΄Π΅Π»ΠΈΠΌΠΎΠΉ ΠΎΡ ΡΠ°ΡΡΠΈΡ. ΠΠ½Π°Π½ΠΈΠ΅ ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌΠ° ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠΉ ΡΡΠ΅Π΄Ρ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΎΠΏΠΈΡΠ°ΡΡ Π΅Π΅ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΡ Π΅Π΅ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΈ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ Ρ ΠΏΠΎΡΠΎΠΆΠ΄Π°ΡΡΠΈΠΌΠΈ Π΅Π΅ ΡΠ°ΡΡΠΈΡΠ°ΠΌΠΈ. ΠΠ· Π½Π΅ΡΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ, ΠΎΠΏΠΈΡΡΠ²Π°Π΅ΠΌΡΡ
Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΠ΅ΠΉ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ DΠΈΠ½Π΅ΡΡ ΠΈ DΠ²ΡΠ½ΡΠΆΠ΄, Π² ΠΌΠ΅Ρ
Π°Π½ΠΈΠΊΠ΅ ΠΡΡΡΠΎΠ½Π° ΡΡΠΈΡΡΠ²Π°Π΅ΡΡΡ Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ - DΠ²ΡΠ½ΡΠΆΠ΄. ΠΠ½Π΅ ΠΏΠΎΠ»Ρ Π·ΡΠ΅Π½ΠΈΡ ΠΌΠ΅Ρ
Π°Π½ΠΈΠΊΠΈ Π»Π΅ΠΆΠΈΡ, ΡΠ°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΊΠΎΠ½ΡΠΈΠ½ΡΡΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ - ΡΠ°ΠΊΠΎΠ²Π° ΡΡΠ΅ΠΏΠ΅Π½Ρ Π½Π΅ΠΏΠΎΠ»Π½ΠΎΡΡ Π½ΡΡΡΠΎΠ½ΠΎΠ²ΡΠΊΠΎΠΉ ΡΡ
Π΅ΠΌΡ ΠΌΠ΅Ρ
Π°Π½ΠΈΠΊΠΈ ΠΊΠ°ΠΊ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠΈΡΠΎΠ΄Ρ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ Π²ΠΈΠ΄ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, ΠΎΠΏΠΈΡΡΠ²Π°ΡΡΠ΅Π³ΠΎ Π²ΠΎΠ·ΠΌΡΡΠ΅Π½ΠΈΠ΅ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ, Π½Π°Ρ
ΠΎΠ΄ΡΡΠ΅ΠΉΡΡ Π² ΡΠΎΡΡΠΎΡΠ½ΠΈΠΈ ΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ, ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ Π²Π½Π΅ΡΠ½Π΅ΠΉ ΡΠΈΠ»Ρ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ ΡΠΈΡΡΠ΅ΠΌΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΠΊΠ°ΠΊ Π°Π½Π°Π»ΠΈΠ·Π°ΡΠΎΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π½Π΅ Π²ΠΏΠΎΠ»Π½Π΅ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½Ρ Π² ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΡ
Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ. ΠΡΠΎ ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½ΠΎ ΡΠ΅ΠΌ, ΡΡΠΎ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΠΏΠΎΠ½ΡΡΠΈΡ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΡΠ²ΠΎΠ±ΠΎΠ΄Ρ ΡΠ°ΡΡΠΈΡΡ ΠΎΠΊΠ°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌ Π² ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΡΡ
ΡΠΈΡΡΠ΅ΠΌΠ°Ρ
Π‘Π²Π΅ΡΡ ΡΠ²Π΅ΡΠΎΠ²ΡΠ΅ ΡΠΈΠ³Π½Π°Π»Ρ, ΠΏΡΠΈΡΠΈΠ½Π½ΠΎ-ΡΠ»Π΅Π΄ΡΡΠ²Π΅Π½Π½Π°Ρ ΡΠ²ΡΠ·Ρ ΠΈ ΡΠ²Π»Π΅Π½ΠΈΠ΅ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ²
Till now in the literature there was no consistent analysis, based on dynamic model of the causal relation between events caused by superluminal signals. The purpose of the paper is to remove this gap in our knowledge, which contributed to the preservation of prejudices regarding superluminal signals. With a simple dynamic model, describing the cause-consequence relation between two events, it is shown that in case of superluminal signals there are no problems with causality principle. The arguments against the existence of superluminal signals, available in the literature, are erroneous because they are based on the identification of different quantities β global time and local time. The physical essence of the relativity phenomenon of physical processes is explained and its universal character is noted. The physical contents of relativity principle is specified. The results of the paper, together with results of previous researches, allow one to assert that the sources and reasons of the error regarding superluminal signals are now understood, the mechanisms of its preservation for a long time in consciousness of people are elucidated, and the true role of superluminal signals in nature is revealed. Thereby the obstacles to the investigations in the field of superluminal communication are removed and the inviting prospects of creating the qualitatively new communication systems are opened.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ, Π·Π°Π²Π΅ΡΡΠ°ΡΡΠ΅ΠΉ ΡΠΈΠΊΠ» Π½Π°ΡΠΈΡ
ΠΌΠ½ΠΎΠ³ΠΎΠ»Π΅ΡΠ½ΠΈΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΠΏΠΎ ΡΠ²Π΅ΡΡ
ΡΠ²Π΅ΡΠΎΠ²ΡΠΌ ΡΠΈΠ³Π½Π°Π»Π°ΠΌ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ ΡΠ΄Π΅Π»Π°ΡΡ Π²ΡΠ²ΠΎΠ΄, ΡΡΠΎ ΡΠΎΡ
ΡΠ°Π½ΡΠ²ΡΠΈΠΉΡΡ ΠΏΠΎΡΡΠΈ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π²Π΅ΠΊΠ° ΠΏΡΠ΅Π΄ΡΠ°ΡΡΡΠ΄ΠΎΠΊ Π² ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ ΡΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²Π΅ΡΠΎΠ²ΠΎΠ³ΠΎ Π±Π°ΡΡΠ΅ΡΠ° ΠΎΠΊΠΎΠ½ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎ ΠΏΡΠ΅ΠΎΠ΄ΠΎΠ»Π΅Π½. ΠΠΎΠ½ΡΡΡ ΠΈΡΡΠΎΠΊΠΈ ΠΈ ΠΏΡΠΈΡΠΈΠ½Ρ Π·Π°Π±Π»ΡΠΆΠ΄Π΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠ²Π΅ΡΡ
ΡΠ²Π΅ΡΠΎΠ²ΡΡ
ΡΠΈΠ³Π½Π°Π»ΠΎΠ², Π²ΡΠΊΡΡΡΡ ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌΡ, ΡΠΏΠΎΡΠΎΠ±ΡΡΠ²ΠΎΠ²Π°Π²ΡΠΈΠ΅ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΌΡ ΡΠΎΡ
ΡΠ°Π½Π΅Π½ΠΈΡ Π΅Π³ΠΎ Π² ΡΠΎΠ·Π½Π°Π½ΠΈΠΈ Π»ΡΠ΄Π΅ΠΉ, ΠΈ ΠΎΡΠΎΠ·Π½Π°Π½Π° ΠΈΡΡΠΈΠ½Π½Π°Ρ ΡΠΎΠ»Ρ ΡΠ²Π΅ΡΡ
ΡΠ²Π΅ΡΠΎΠ²ΡΡ
ΡΠΈΠ³Π½Π°Π»ΠΎΠ² Π² ΠΏΡΠΈΡΠΎΠ΄Π΅. Π’Π΅ΠΌ ΡΠ°ΠΌΡΠΌ ΡΡΡΡΠ°Π½ΡΡΡΡΡ ΠΏΡΠ΅ΠΏΡΡΡΡΠ²ΠΈΡ Π½Π° ΠΏΡΡΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΡΠ²Π΅ΡΡ
ΡΠ²Π΅ΡΠΎΠ²ΠΎΠΉ ΠΊΠΎΠΌΠΌΡΠ½ΠΈΠΊΠ°ΡΠΈΠΈ ΠΈ ΠΎΡΠΊΡΡΠ²Π°ΡΡΡΡ ΡΠΈΡΠΎΠΊΠΈΠ΅ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Ρ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ Π½ΠΎΠ²ΡΡ
ΡΡΠ΅Π΄ΡΡΠ² ΠΈ ΡΠΈΡΡΠ΅ΠΌ ΠΊΠΎΠΌΠΌΡΠ½ΠΈΠΊΠ°ΡΠΈΠΈ. ΠΠΎ ΡΠΈΡ
ΠΏΠΎΡ Π² Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ΅ ΠΎΡΡΡΡΡΡΠ²ΠΎΠ²Π°Π» ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΠΉ, ΠΎΡΠ½ΠΎΠ²Π°Π½Π½ΡΠΉ Π½Π° Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ, Π°Π½Π°Π»ΠΈΠ· ΠΏΡΠΈΡΠΈΠ½Π½ΠΎΠΉ ΡΠ²ΡΠ·ΠΈ, ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½Π½ΠΎΠΉ ΡΠ²Π΅ΡΡ
ΡΠ²Π΅ΡΠΎΠ²ΡΠΌΠΈ ΡΠΈΠ³Π½Π°Π»Π°ΠΌΠΈ. Π¦Π΅Π»Ρ Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ β ΡΡΡΡΠ°Π½ΠΈΡΡ ΡΡΠΎΡ ΠΏΡΠΎΠ±Π΅Π» Π² Π½Π°ΡΠΈΡ
Π·Π½Π°Π½ΠΈΡΡ
. ΠΠ° ΠΏΡΠΎΡΡΠΎΠΉ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΏΡΠΈΡΠΈΠ½Π½ΠΎ-ΡΠ»Π΅Π΄ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΡΠ²ΡΠ·ΠΈ ΠΌΠ΅ΠΆΠ΄Ρ Π΄Π²ΡΠΌΡ ΡΠΎΠ±ΡΡΠΈΡΠΌΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π² ΡΠ»ΡΡΠ°Π΅ ΡΠ²Π΅ΡΡ
ΡΠ²Π΅ΡΠΎΠ²ΡΡ
ΡΠΈΠ³Π½Π°Π»ΠΎΠ² Π½Π΅ Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ ΠΊΠ°ΠΊΠΈΡ
-Π»ΠΈΠ±ΠΎ Π·Π°ΡΡΡΠ΄Π½Π΅Π½ΠΈΠΉ Ρ ΠΏΡΠΈΠ½ΡΠΈΠΏΠΎΠΌ ΠΏΡΠΈΡΠΈΠ½Π½ΠΎΡΡΠΈ. ΠΠΌΠ΅ΡΡΠΈΠ΅ΡΡ Π² Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ΅ Π΄ΠΎΠ²ΠΎΠ΄Ρ ΠΏΡΠΎΡΠΈΠ² ΡΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²Π΅ΡΡ
ΡΠ²Π΅ΡΠΎΠ²ΡΡ
ΡΠΈΠ³Π½Π°Π»ΠΎΠ² ΠΎΡΠΈΠ±ΠΎΡΠ½Ρ ΠΏΠΎ ΡΠΎΠΉ ΠΏΡΠΈΡΠΈΠ½Π΅, ΡΡΠΎ ΠΎΠ½ΠΈ ΠΎΡΠ½ΠΎΠ²Π°Π½Ρ Π½Π° ΠΎΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π»Π΅Π½ΠΈΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
Π²Π΅Π»ΠΈΡΠΈΠ½ β Π³Π»ΠΎΠ±Π°Π»ΡΠ½ΠΎΠ³ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Π²Ρ
ΠΎΠ΄ΡΡΠ΅Π³ΠΎ Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, ΠΈ Π»ΠΎΠΊΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Π²Ρ
ΠΎΠ΄ΡΡΠ΅Π³ΠΎ Π² ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΠΠΎΡΠ΅Π½ΡΠ°. Π Π°Π·ΡΡΡΠ½ΡΠ΅ΡΡΡ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΡΠ½ΠΎΡΡΡ ΡΠ²Π»Π΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² ΠΈ ΠΎΡΠΌΠ΅ΡΠ°Π΅ΡΡΡ Π΅Π³ΠΎ ΡΠ½ΠΈΠ²Π΅ΡΡΠ°Π»ΡΠ½ΡΠΉ Ρ
Π°ΡΠ°ΠΊΡΠ΅Ρ. Π£ΡΠΎΡΠ½ΡΠ΅ΡΡΡ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΠΏΡΠΈΠ½ΡΠΈΠΏΠ° ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ
ΠΠΎΠ²ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ Π² ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΡΡΡΠ½ΠΎΡΡΠΈ ΠΏΡΠΈΠ½ΡΠΈΠΏΠ° ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ
The evidence for the physical nonequivalence of inertial reference frames moving relative to each other is given. The content of relativity principle is shown to be narrower than it is accepted nowadays. The principle of relativity is kept as the requirement of relativistic invariance of the laws of nature, the requirement, which results from the relativistic invariance of Maxwell equations for electromagnetic field. However, according to the results of the paper, the physical equivalence of inertial reference frames moving relative to each other does not follow from the relativistic invariance of equations of motion. This is due to the fact that the character of physical processes in inertial reference frames is not defined completely by equations of motion. To define phenomena and processes uniquely, the initial conditions should be used and formulated in terms of the time independence of spatial coordinates (global time). The transition of the global time of one inertial reference frame to the local times of the other frame, related to each other by Lorentz transformations, results in the physical nonequivalence of inertial reference frames. The above mentioned nonequivalence is a consequence of incompatibility of Lorentz transformations with dynamic principle: these transformations knock solutions of the dynamic equations out of the class of solutions with global time transferring them to solutions with local time. One manifestation of nonequivalence of inertial reference frames is the effect of physical processes relativity predicted by us in 1978. As the examples, illustrating basic conclusions of the paper, we consider elementary physical systems β the set of classical point particles, a free electron field and a quantum system in an external field causing quantum transitions. Under Lorentz transformations, the global time is shown to be split into some number of local times. Though, formally, the relativistic invariance of equations of motion is kept, the local time dependence on the velocity of relative motion of reference frames testifies that each inertial reference frame proves to be singled out among the others. The received results can serve as a strict substantiation of our previous conclusions concerning light barrier and superluminal communication, and open the way to the construction of the consecutive theory of physical processes occurring in inertial frames moving relative to an observer (for example, on stars).ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΈΠ½Π΅ΡΡΠΈΠ°Π»ΡΠ½ΡΠ΅ ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΡΡΡΠ΅ΡΠ°, Π΄Π²ΠΈΠΆΡΡΠΈΠ΅ΡΡ Π΄ΡΡΠ³ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΄ΡΡΠ³Π°, Π½Π΅ ΡΠ²Π»ΡΡΡΡΡ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΠΌΠΈ. Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΠΏΡΠΈΠ½ΡΠΈΠΏΠ° ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΎΠΊΠ°Π·ΡΠ²Π°Π΅ΡΡΡ Π±ΠΎΠ»Π΅Π΅ ΡΠ·ΠΊΠΈΠΌ, ΡΠ΅ΠΌ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅ΡΡΡ Π½ΡΠ½Π΅. ΠΡΠΈΠ½ΡΠΈΠΏ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΡΠΎΡ
ΡΠ°Π½ΡΠ΅ΡΡΡ ΠΊΠ°ΠΊ ΡΡΠ΅Π±ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ΅Π»ΡΡΠΈΠ²ΠΈΡΡΡΠΊΠΎΠΉ ΠΈΠ½Π²Π°ΡΠΈΠ°Π½ΡΠ½ΠΎΡΡΠΈ Π·Π°ΠΊΠΎΠ½ΠΎΠ² ΠΏΡΠΈΡΠΎΠ΄Ρ, Π½Π° Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΡΠΊΠ°Π·ΡΠ²Π°Π΅Ρ ΡΠ΅Π»ΡΡΠΈΠ²ΠΈΡΡΡΠΊΠ°Ρ ΠΈΠ½Π²Π°ΡΠΈΠ°Π½ΡΠ½ΠΎΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΠ°ΠΊΡΠ²Π΅Π»Π»Π°. ΠΠ΄Π½Π°ΠΊΠΎ ΠΈΠ· ΡΠ΅Π»ΡΡΠΈΠ²ΠΈΡΡΡΠΊΠΎΠΉ ΠΈΠ½Π²Π°ΡΠΈΠ°Π½ΡΠ½ΠΎΡΡΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π½Π΅ ΡΠ»Π΅Π΄ΡΠ΅Ρ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΡΡΡ ΠΈΠ½Π΅ΡΡΠΈΠ°Π»ΡΠ½ΡΡ
ΡΠΈΡΡΠ΅ΠΌ ΠΎΡΡΡΠ΅ΡΠ°, Π΄Π²ΠΈΠΆΡΡΠΈΡ
ΡΡ Π΄ΡΡΠ³ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΄ΡΡΠ³Π°. ΠΡΠΎ ΡΠ²ΡΠ·Π°Π½ΠΎ Ρ ΡΠ΅ΠΌ, ΡΡΠΎ Ρ
Π°ΡΠ°ΠΊΡΠ΅Ρ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² Π² ΠΈΠ½Π΅ΡΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΎΡΡΡΠ΅ΡΠ° Π½Π΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΏΠΎΠ»Π½ΠΎΡΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΠΌΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ. ΠΠ»Ρ ΠΎΠ΄Π½ΠΎΠ·Π½Π°ΡΠ½ΠΎΠ³ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠ²Π»Π΅Π½ΠΈΠΉ ΠΈ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΡ Π½Π°ΡΠ°Π»ΡΠ½ΡΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠΎΡΠΌΡΠ»ΠΈΡΡΡΡΡΡ Π½Π° ΡΠ·ΡΠΊΠ΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Π½Π΅ Π·Π°Π²ΠΈΡΡΡΠ΅Π³ΠΎ ΠΎΡ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΡΡ
ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ (Π³Π»ΠΎΠ±Π°Π»ΡΠ½ΠΎΠ³ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ). ΠΡΠΈ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡΡ
ΠΠΎΡΠ΅Π½ΡΠ° Π³Π»ΠΎΠ±Π°Π»ΡΠ½ΠΎΠ΅ Π²ΡΠ΅ΠΌΡ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ½Π΅ΡΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΡΡΡΠ΅ΡΠ° ΠΏΠ΅ΡΠ΅Ρ
ΠΎΠ΄ΠΈΡ Π² Π»ΠΎΠΊΠ°Π»ΡΠ½ΡΠ΅ Π²ΡΠ΅ΠΌΠ΅Π½Π° Π΄ΡΡΠ³ΠΎΠΉ. ΠΡΠΎ ΠΎΠ±ΡΡΠΎΡΡΠ΅Π»ΡΡΡΠ²ΠΎ ΠΈ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π½Π΅ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΡΡΠΈ ΠΈΠ½Π΅ΡΡΠΈΠ°Π»ΡΠ½ΡΡ
ΡΠΈΡΡΠ΅ΠΌ ΠΎΡΡΡΠ΅ΡΠ°. ΠΠ΄Π½ΠΈΠΌ ΠΈΠ· ΠΏΡΠΎΡΠ²Π»Π΅Π½ΠΈΠΉ Π½Π΅ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΡΡΠΈ ΠΈΠ½Π΅ΡΡΠΈΠ°Π»ΡΠ½ΡΡ
ΡΠΈΡΡΠ΅ΠΌ ΠΎΡΡΡΠ΅ΡΠ° ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠ΅Π΄ΡΠΊΠ°Π·Π°Π½Π½ΡΠΉ Π½Π°ΠΌΠΈ Π² 1978 Π³. ΡΡΡΠ΅ΠΊΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ². Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΏΡΠΈΠΌΠ΅ΡΠΎΠ², ΠΈΠ»Π»ΡΡΡΡΠΈΡΡΡΡΠΈΡ
ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ Π²ΡΠ²ΠΎΠ΄Ρ ΡΠ°Π±ΠΎΡΡ, ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ ΠΏΡΠΎΡΡΠ΅ΠΉΡΠΈΠ΅ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΈΡΡΠ΅ΠΌΡ β ΡΠΎΠ²ΠΎΠΊΡΠΏΠ½ΠΎΡΡΡ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠΎΡΠ΅ΡΠ½ΡΡ
ΡΠ°ΡΡΠΈΡ, ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΠΎΠ΅ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ ΠΈ ΠΊΠ²Π°Π½ΡΠΎΠ²Π°Ρ ΡΠΈΡΡΠ΅ΠΌΠ° Π²ΠΎ Π²Π½Π΅ΡΠ½Π΅ΠΌ ΠΏΠΎΠ»Π΅, Π²ΡΠ·ΡΠ²Π°ΡΡΠ΅ΠΌ ΠΊΠ²Π°Π½ΡΠΎΠ²ΡΠ΅ ΠΏΠ΅ΡΠ΅Ρ
ΠΎΠ΄Ρ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΈ Π»ΠΎΡΠ΅Π½ΡΠ΅Π²ΡΡ
ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡΡ
Π³Π»ΠΎΠ±Π°Π»ΡΠ½ΠΎΠ΅ Π²ΡΠ΅ΠΌΡ ΡΠ°ΡΡΠ΅ΠΏΠ»ΡΠ΅ΡΡΡ Π½Π° Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠΈΡΠ»ΠΎ Π»ΠΎΠΊΠ°Π»ΡΠ½ΡΡ
Π²ΡΠ΅ΠΌΠ΅Π½. Π₯ΠΎΡΡ ΡΠΎΡΠΌΠ°Π»ΡΠ½ΠΎ ΡΠ΅Π»ΡΡΠΈΠ²ΠΈΡΡΡΠΊΠ°Ρ ΠΈΠ½Π²Π°ΡΠΈΠ°Π½ΡΠ½ΠΎΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠΎΡ
ΡΠ°Π½ΡΠ΅ΡΡΡ, Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ Π»ΠΎΠΊΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΎΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠΈΡΡΠ΅ΠΌ ΠΎΡΡΡΠ΅ΡΠ° ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΠ΅Ρ ΠΎ ΡΠΎΠΌ, ΡΡΠΎ ΠΊΠ°ΠΆΠ΄Π°Ρ ΠΈΠ½Π΅ΡΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠΈΡΡΠ΅ΠΌΠ° ΠΎΡΡΡΠ΅ΡΠ° ΠΎΠΊΠ°Π·ΡΠ²Π°Π΅ΡΡΡ Π²ΡΠ΄Π΅Π»Π΅Π½Π½ΠΎΠΉ ΠΏΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΊ Π΄ΡΡΠ³ΠΎΠΉ. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΌΠΎΠ³ΡΡ ΡΠ»ΡΠΆΠΈΡΡ ΡΡΡΠΎΠ³ΠΈΠΌ ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π½Π°ΡΠΈΡ
Π²ΡΠ²ΠΎΠ΄ΠΎΠ² ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠ²Π΅ΡΠΎΠ²ΠΎΠ³ΠΎ Π±Π°ΡΡΠ΅ΡΠ° ΠΈ ΡΠ²Π΅ΡΡ
ΡΠ²Π΅ΡΠΎΠ²ΠΎΠΉ ΠΊΠΎΠΌΠΌΡΠ½ΠΈΠΊΠ°ΡΠΈΠΈ, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ
ΡΡ Π² ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠΈΡ
ΡΠ°Π±ΠΎΡΠ°Ρ
, ΠΈ ΠΎΡΠΊΡΡΠ²Π°ΡΡ ΠΏΡΡΡ ΠΊ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠ΅ΠΎΡΠΈΠΈ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ², ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΡΡΠΈΡ
Π² Π΄Π²ΠΈΠΆΡΡΠΈΡ
ΡΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π°Π±Π»ΡΠ΄Π°ΡΠ΅Π»Ρ ΠΈΠ½Π΅ΡΡΠΈΠ°Π»ΡΠ½ΡΡ
ΡΠΈΡΡΠ΅ΠΌΠ°Ρ
ΠΎΡΡΡΠ΅ΡΠ° (Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, Π½Π° Π·Π²Π΅Π·Π΄Π°Ρ
)
ΠΠΎΠ²Π°Ρ ΠΈΠ½ΡΠ΅ΡΠΏΡΠ΅ΡΠ°ΡΠΈΡ ΡΠ΅Π»ΡΡΠΈΠ²ΠΈΡΡΡΠΊΠΎΠΉ ΡΠΈΠ·ΠΈΠΊΠΈ
In this paper the results of our long-term research in the field of relativistic physics are summed up. The evidences are presented that the inertial reference frames (IRF), moving relative to each other, are not physically equivalent and, as a consequence, physical interpretation of the special theory of relativity (STR), belonging to Einstein, is erroneous. From the physical point of view, the inequality of rights of IRF moving relative to each other is caused by the fact that the local times entering into Lorentz transformations, which relate IRF to each other, essentially differ from the global times, in terms of which the evolution of physical system in IRF, in accord with dynamic principle, is described. The local time represents the time coordinates of points of 4-space-time β some parameters the change of which has nothing to do with dynamic principle. The global time, unlike local, has deep physical meaning: this is the real, physical time, in which the physical system develops and the observer works, and the moments of which coincide with the readings of the observerβs clock in a fixed IRF. Starting from the relativistic equations of motion, it is shown that the length of a rod, moving in some IRF, does not depend on the speed of the rod and equals its proper length. When passing from one IRF to another, the scale of length changes, along the direction of relative motion of reference frames, in that reference frame, into which the transition is made, in comparison with the initial reference frame. The mere change of the scale of length is an indication of the physical nonequivalence of the IRF moving relative to each other, so Lorentz contraction of length is not real, observable effect. According to the results received, rather strict restrictions imposed by causality principle on the motion of the system of several particles are incompatible with Lorentz transformations. As the result of Lorentz transformations, the solutions of dynamic equations as well as the equations themselves are knocked out of the class, to which initial solutions and equations belong. In view of the physical nonequivalence of IRF, the motion of a physical system relative to some reference frame K, transformed to the reference frame K?, moving relative to K, is not a real motion in K?; it represents only a mapping into K? of the motion which takes place in K. The effect of relativity of physical processes predicted by us is just the one which is caused by the fact that the mapping of physical process into some IRF essentially differs from the real process occurring in this reference frame.ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ ΠΈΡΠΎΠ³ ΠΌΠ½ΠΎΠ³ΠΎΠ»Π΅ΡΠ½ΠΈΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΡΠ΅Π»ΡΡΠΈΠ²ΠΈΡΡΡΠΊΠΎΠΉ ΡΠΈΠ·ΠΈΠΊΠΈ, Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΠΊΠΎΡΠΎΡΡΡ
Π΄ΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΈΠ½Π΅ΡΡΠΈΠ°Π»ΡΠ½ΡΠ΅ ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΡΡΡΠ΅ΡΠ° (ΠΠ‘Π), Π΄Π²ΠΈΠΆΡΡΠΈΠ΅ΡΡ Π΄ΡΡΠ³ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΄ΡΡΠ³Π°, Π½Π΅ ΡΠ²Π»ΡΡΡΡΡ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΠΌΠΈ ΠΈ, Π²ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ ΡΡΠΎΠ³ΠΎ, ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΈΠ½ΡΠ΅ΡΠΏΡΠ΅ΡΠ°ΡΠΈΡ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ΅ΠΎΡΠΈΠΈ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ (Π‘Π’Π), ΠΏΡΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°ΡΠ°Ρ ΠΠΉΠ½ΡΡΠ΅ΠΉΠ½Ρ, ΠΎΡΠΈΠ±ΠΎΡΠ½Π°. ΠΠ΅ΡΠ°Π²Π½ΠΎΠΏΡΠ°Π²ΠΈΠ΅ ΠΠ‘Π Ρ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΎΡΠΊΠΈ Π·ΡΠ΅Π½ΠΈΡ ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½ΠΎ ΡΠ΅ΠΌ, ΡΡΠΎ Π»ΠΎΠΊΠ°Π»ΡΠ½ΡΠ΅ Π²ΡΠ΅ΠΌΠ΅Π½Π°, Π²Ρ
ΠΎΠ΄ΡΡΠΈΠ΅ Π² ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΠΠΎΡΠ΅Π½ΡΠ°, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ²ΡΠ·ΡΠ²Π°ΡΡ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠΎΠ±ΠΎΠΉ Π΄Π²ΠΈΠΆΡΡΠΈΠ΅ΡΡ Π΄ΡΡΠ³ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΄ΡΡΠ³Π° ΠΠ‘Π, ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΠΎΡΠ»ΠΈΡΠ°ΡΡΡΡ ΠΎΡ Π³Π»ΠΎΠ±Π°Π»ΡΠ½ΡΡ
Π²ΡΠ΅ΠΌΠ΅Π½, Π½Π° ΡΠ·ΡΠΊΠ΅ ΠΊΠΎΡΠΎΡΡΡ
ΠΎΠΏΠΈΡΡΠ²Π°Π΅ΡΡΡ ΡΠ²ΠΎΠ»ΡΡΠΈΡ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ Π² ΠΠ‘Π Π² ΡΠΎΠ³Π»Π°ΡΠΈΠΈ Ρ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΏΡΠΈΠ½ΡΠΈΠΏΠΎΠΌ. ΠΠΎΠΊΠ°Π»ΡΠ½ΠΎΠ΅ Π²ΡΠ΅ΠΌΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ Π²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠ΅ΠΊ ΡΠ΅ΡΡΡΠ΅Ρ
ΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π°-Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ β Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ, ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΡΡ
Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΊ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΌΡ ΠΏΡΠΈΠ½ΡΠΈΠΏΡ. ΠΠ»ΠΎΠ±Π°Π»ΡΠ½ΠΎΠ΅ Π²ΡΠ΅ΠΌΡ, Π² ΠΎΡΠ»ΠΈΡΠΈΠ΅ ΠΎΡ Π»ΠΎΠΊΠ°Π»ΡΠ½ΠΎΠ³ΠΎ, ΠΈΠΌΠ΅Π΅Ρ Π³Π»ΡΠ±ΠΎΠΊΠΈΠΉ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ»: ΡΡΠΎ ΡΠ΅Π°Π»ΡΠ½ΠΎΠ΅, ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π²ΡΠ΅ΠΌΡ, Π² ΠΊΠΎΡΠΎΡΠΎΠΌ ΡΠ°Π·Π²ΠΈΠ²Π°Π΅ΡΡΡ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠΈΡΡΠ΅ΠΌΠ° ΠΈ ΡΠ°Π±ΠΎΡΠ°Π΅Ρ Π½Π°Π±Π»ΡΠ΄Π°ΡΠ΅Π»Ρ, Ρ.Π΅. Π²ΡΠ΅ΠΌΡ, ΠΌΠΎΠΌΠ΅Π½ΡΡ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡΡ Ρ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΈΡΠΌΠΈ ΡΠ°ΡΠΎΠ² Π½Π°Π±Π»ΡΠ΄Π°ΡΠ΅Π»Ρ Π² ΡΠΈΠΊΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΠ‘Π. ΠΡΡ
ΠΎΠ΄Ρ ΠΈΠ· ΡΠ΅Π»ΡΡΠΈΠ²ΠΈΡΡΡΠΊΠΈΡ
ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ [1], ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π΄Π»ΠΈΠ½Π° ΡΡΠ΅ΡΠΆΠ½Ρ, Π΄Π²ΠΈΠΆΡΡΠ΅Π³ΠΎΡΡ Π² Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΠ‘Π, Π½Π΅ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΡΠ΅ΡΠΆΠ½Ρ ΠΈ ΡΠ°Π²Π½Π° Π΅Π³ΠΎ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΠΎΠΉ Π΄Π»ΠΈΠ½Π΅. ΠΡΠΈ ΠΏΠ΅ΡΠ΅Ρ
ΠΎΠ΄Π΅ ΠΈΠ· ΠΎΠ΄Π½ΠΎΠΉ ΠΠ‘Π Π² Π΄ΡΡΠ³ΡΡ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΠΌΠ°ΡΡΡΠ°Π± Π΄Π»ΠΈΠ½Ρ Π²Π΄ΠΎΠ»Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠΈΡΡΠ΅ΠΌ ΠΎΡΡΡΠ΅ΡΠ° Π² ΡΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΎΡΡΡΠ΅ΡΠ°, Π² ΠΊΠΎΡΠΎΡΡΡ ΡΠΎΠ²Π΅ΡΡΠ°Π΅ΡΡΡ ΠΏΠ΅ΡΠ΅Ρ
ΠΎΠ΄, ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΠΈΡΡ
ΠΎΠ΄Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠΎΠΉ ΠΎΡΡΡΠ΅ΡΠ°. Π‘Π°ΠΌΠΎ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΌΠ°ΡΡΡΠ°Π±Π° Π΄Π»ΠΈΠ½Ρ ΡΠ»ΡΠΆΠΈΡ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠΌ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π½Π΅ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΡΡΠΈ Π΄Π²ΠΈΠΆΡΡΠΈΡ
ΡΡ Π΄ΡΡΠ³ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΄ΡΡΠ³Π° ΠΠ‘Π, ΡΠ°ΠΊ ΡΡΠΎ Π»ΠΎΡΠ΅Π½ΡΠ΅Π²ΠΎ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ Π½Π΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ΅Π°Π»ΡΠ½ΡΠΌ, Π½Π°Π±Π»ΡΠ΄Π°Π΅ΠΌΡΠΌ ΡΡΡΠ΅ΠΊΡΠΎΠΌ. Π‘ΠΎΠ³Π»Π°ΡΠ½ΠΎ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠΌ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌ, Π²Π΅ΡΡΠΌΠ° ΠΆΠ΅ΡΡΠΊΠΈΠ΅ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΈΡ, Π½Π°ΠΊΠ»Π°Π΄ΡΠ²Π°Π΅ΠΌΡΠ΅ ΠΏΡΠΈΠ½ΡΠΈΠΏΠΎΠΌ ΠΏΡΠΈΡΠΈΠ½Π½ΠΎΡΡΠΈ Π½Π° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠΈΡΡΠ΅ΠΌΡ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ
ΡΠ°ΡΡΠΈΡ, Π½Π΅ΡΠΎΠ²ΠΌΠ΅ΡΡΠΈΠΌΡ Ρ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡΠΌΠΈ ΠΠΎΡΠ΅Π½ΡΠ°. ΠΠ°ΠΊ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ, ΡΠ°ΠΊ ΠΈ ΡΠ°ΠΌΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π²ΡΠ±ΠΈΠ²Π°ΡΡΡΡ, Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΠΠΎΡΠ΅Π½ΡΠ°, ΠΈΠ· ΡΠΎΠ³ΠΎ ΠΊΠ»Π°ΡΡΠ°, ΠΊ ΠΊΠΎΡΠΎΡΠΎΠΌΡ ΠΏΡΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ ΠΈΡΡ
ΠΎΠ΄Π½ΡΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. ΠΠ²ΠΈΠ΄Ρ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π½Π΅ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΡΡΠΈ ΠΠ‘Π, Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΡΡΡΠ΅ΡΠ° K, ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½Π½ΠΎΠ΅ Π² ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΡΡΡΠ΅ΡΠ° K?, Π΄Π²ΠΈΠΆΡΡΡΡΡΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ K, Π½Π΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ΅Π°Π»ΡΠ½ΡΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π² K?, ΠΎΠ½ΠΎ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ Π»ΠΈΡΡ ΠΎΡΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π² K? ΡΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΠΈΡ Π² K. ΠΡΠ΅Π΄ΡΠΊΠ°Π·Π°Π½Π½ΡΠΉ Π½Π°ΠΌΠΈ ΡΡΡΠ΅ΠΊΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² ΠΊΠ°ΠΊ ΡΠ°Π· ΠΈ ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½ ΡΠ΅ΠΌ, ΡΡΠΎ ΠΎΡΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ° Π² Π½Π΅ΠΊΠΎΡΠΎΡΡΡ ΠΠ‘Π ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΠΎΡΠ»ΠΈΡΠ°Π΅ΡΡΡ ΠΎΡ ΡΠ΅Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ°, ΠΏΡΠΎΡΠ΅ΠΊΠ°ΡΡΠ΅Π³ΠΎ Π² ΡΡΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΎΡΡΡΠ΅ΡΠ°
ΠΠ°ΡΡΠ° ΡΠ΅Π»ΡΡΠΈΠ²ΠΈΡΡΡΠΊΠΎΠΉ ΡΠ°ΡΡΠΈΡΡ ΠΊΠ°ΠΊ ΡΡΠ½ΠΊΡΠΈΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΉ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ. Π€ΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ
The work is the completion of a series of articles devoted to the study of accelerated motions by inertia [1-15]. The main research results: the physical nature of accelerated motions by inertia (AMI) and particle masses is revealed; it is shown that they play leading roles in the play, which is called the stable development of matter; the cause of the difficulties that physics is now experiencing is established, and the right way to overcome them is found.
The disclosure of the physical nature of AMI and the particle mass made it possible to establish the cause of a deep crisis of physical science. P.A.M. Dirac, one of the creators of quantum electrodynamics (QED), drew at-tention to the existence of a crisis in physics in the middle of the last century [16], [17] (p. 403). He argued that the basic equations of electrodynamics were incorrect, but did not explain the reason for the difficulties of QED. The reason is the incompleteness of the special theory of relativity (STR), which forms the foundation of QED. The incompleteness of STR is expressed in the fact that STR considers only forced accelerated motions and it is assumed that the particle mass is a constant parameter. AMI fell out of the field of view of SRT, although these movements of particles play an extremely important role in the development of matter. AMI are an attribute of matter, they occur with the acceleration of particles, but do not lead to energy loss of particles. AMI form such a functional dependence of the mass of particles on velocities and coordinates of particles, which ensures the sta-ble development of matter. AMI generate force fields with the help of which the interaction between particles occurs.
It was shown that the particle mass depends not only on the particle velocity modulus, as it was assumed in pre-vious works, but also on the particleβs position in space, i.e. mass is a function of motion states. The existence of dependence of the particle mass on the position of the particle in space is of great importance for the evolution of matter, since the possibilities of matter to organize the stable development of its structural elements are ex-tremely expanded. The mass equation is derived from the energy conservation condition. It is a second-order partial differential equation. In the particular case, when the mass of the particle does not depend on the posi-tion of the particle in space, this equation transforms into an ordinary differential equation of the second order, obtained and studied in [14, 15]. The equation for the particle mass acts as a kind of dynamic principle for the proper motions of the particle. In physical content, the equation for mass is significantly different from the equations of forced motions. If the equation for mass serves to determine mass as a function of the state of motion of the particle, the equations of motion determine the development in time of the state of motion itself.
The physical properties of accelerated motions by inertia are investigated, and proper and forced motions, which are dialectical opposites, are compared. There is a qualitative difference between the forces acting on a particle in forced and in its proper motions: in a forced motion, the force is the cause of acceleration, and its proper motions are the result of acceleration. A change in the mass of a particle with a change in the position of a particle in space causes the heterogeneity and non-isotropy of space and the heterogeneity of time.
A new approach is formulated in relativistic mechanics, in which there are no difficulties with the incom-pleteness of the theory inherent to STR. Unlike STR, in the formulation of mechanics developed here, both proper motions of particles and forced ones are taken into account; not the motions of free, bare particles that do not exist in nature, but accelerated motions by inertia (AMI) β the motions of real, physical particles are considered as motions by inertia; the assumption that the particle mass is a constant parameter is not used; mass acts as a function of the state of motion; the functional dependence of the particle mass on the coordi-nates and velocities is formed by AMI and is determined by the equation for the mass, which guarantees the conservation of particle energy (in the absence of external field).
Based on the results obtained, the following conclusion can be formulated. The reason for the crisis of physics is STR, which is the basis of electrodynamics. STR is an abstract mathematical scheme, which due to its in-completeness cannot describe physical reality. Matter, as a self-organizing, self-governing, thinking entity, pre-fers to develop in a completely different way than STR prescribes for it. The work is an extension and continua-tion of studies [22, 23] in the field of quantum electrodynamics.Π Π°Π±ΠΎΡΠ° ΡΠ²Π»ΡΠ΅ΡΡΡ Π·Π°Π²Π΅ΡΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΠΈΠΊΠ»Π° ΡΡΠ°ΡΠ΅ΠΉ, ΠΏΠΎΡΠ²ΡΡΠ΅Π½Π½ΡΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΡ
Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ [1β15]. ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ: ΡΠ°ΡΠΊΡΡΡΠ° ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΏΡΠΈΡΠΎΠ΄Π° ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΡ
Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ (Π£ΠΠ) ΠΈ ΠΌΠ°ΡΡΡ ΡΠ°ΡΡΠΈΡΡ; ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π£ΠΠ ΠΈ ΠΌΠ°ΡΡΠ° ΡΠ°ΡΡΠΈΡΡ ΠΈΠ³ΡΠ°ΡΡ Π²Π΅Π΄ΡΡΠΈΠ΅ ΡΠΎΠ»ΠΈ Π² ΡΠΏΠ΅ΠΊΡΠ°ΠΊΠ»Π΅, ΠΊΠΎΡΠΎΡΡΠΉ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΡΠΌ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ΠΌ ΠΌΠ°ΡΠ΅ΡΠΈΠΈ; ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π° ΠΏΡΠΈΡΠΈΠ½Π° ΡΡΡΠ΄Π½ΠΎΡΡΠ΅ΠΉ, ΠΏΠ΅ΡΠ΅ΠΆΠΈΠ²Π°Π΅ΠΌΡΡ
Π½ΡΠ½Π΅ ΡΠΈΠ·ΠΈΠΊΠΎΠΉ, ΠΈ Π½Π°ΠΉΠ΄Π΅Π½ Π²Π΅ΡΠ½ΡΠΉ ΠΏΡΡΡ ΠΈΡ
ΠΏΡΠ΅ΠΎΠ΄ΠΎΠ»Π΅Π½ΠΈΡ. Π Π°ΡΠΊΡΡΡΠΈΠ΅ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠΈΡΠΎΠ΄Ρ Π£ΠΠ ΠΈ ΠΌΠ°ΡΡΡ ΡΠ°ΡΡΠΈΡΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΡΡΡΠ°Π½ΠΎΠ²ΠΈΡΡ ΠΏΡΠΈΡΠΈΠ½Ρ Π³Π»ΡΠ±ΠΎΠΊΠΎΠ³ΠΎ ΠΊΡΠΈΠ·ΠΈΡΠ° ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π½Π°ΡΠΊΠΈ. ΠΠ° ΡΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΡΠΈΠ·ΠΈΡΠ° ΡΠΈΠ·ΠΈΠΊΠΈ ΠΎΠ±ΡΠ°ΡΠΈΠ» Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π.Π.Π. ΠΠΈΡΠ°ΠΊ, ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΡΠΎΠ·Π΄Π°ΡΠ΅Π»Π΅ΠΉ ΠΊΠ²Π°Π½ΡΠΎΠ²ΠΎΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ (ΠΠΠ), Π΅ΡΠ΅ Π² ΡΠ΅ΡΠ΅Π΄ΠΈΠ½Π΅ ΠΏΡΠΎΡΠ»ΠΎΠ³ΠΎ Π²Π΅ΠΊΠ° [16, 17, Ρ.403]. ΠΠ½ ΡΡΠ²Π΅ΡΠΆΠ΄Π°Π», ΡΡΠΎ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ Π½Π΅Π²Π΅ΡΠ½Ρ, Π½ΠΎ Π½Π΅ ΡΠ°Π·ΡΡΡΠ½ΠΈΠ» ΠΏΡΠΈΡΠΈΠ½Ρ ΡΡΡΠ΄Π½ΠΎΡΡΠ΅ΠΉ ΠΠΠ. ΠΡΠΈΡΠΈΠ½ΠΎΠΉ ΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π΅ΠΏΠΎΠ»Π½ΠΎΡΠ° ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ΅ΠΎΡΠΈΠΈ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ (Π‘Π’Π), ΡΠΎΡΡΠ°Π²Π»ΡΡΡΠ΅ΠΉ ΡΡΠ½Π΄Π°ΠΌΠ΅Π½Ρ ΠΠΠ. ΠΠ΅ΠΏΠΎΠ»Π½ΠΎΡΠ° Π‘Π’Π Π²ΡΡΠ°ΠΆΠ°Π΅ΡΡΡ Π² ΡΠΎΠΌ, ΡΡΠΎ Π² Π‘Π’Π ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡΡΡ ΡΠΎΠ»ΡΠΊΠΎ Π²ΡΠ½ΡΠΆΠ΄Π΅Π½Π½ΡΠ΅ ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΈ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΡΡΡ, ΡΡΠΎ ΠΌΠ°ΡΡΠ° ΡΠ°ΡΡΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠΎΡΡΠΎΡΠ½Π½ΡΠΌ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠΌ. ΠΠ· ΠΏΠΎΠ»Ρ Π·ΡΠ΅Π½ΠΈΡ Π‘Π’Π Π²ΡΠΏΠ°Π΄Π°ΡΡ Π£ΠΠ β ΡΠ°ΠΊΠΈΠ΅ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ°ΡΡΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΈΠ³ΡΠ°ΡΡ ΠΈΡΠΊΠ»ΡΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π²Π°ΠΆΠ½ΡΡ ΡΠΎΠ»Ρ Π² ΡΠ°Π·Π²ΠΈΡΠΈΠΈ ΠΌΠ°ΡΠ΅ΡΠΈΠΈ. Π£ΠΠ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡ ΡΠΎΠ±ΠΎΠΉ Π°ΡΡΠΈΠ±ΡΡ ΠΌΠ°ΡΠ΅ΡΠΈΠΈ, ΠΎΠ½ΠΈ ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΡΡ Ρ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΠ°ΡΡΠΈΡ, Π½ΠΎ Π½Π΅ ΠΏΡΠΈΠ²ΠΎΠ΄ΡΡ ΠΊ ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΏΠΎΡΠ΅ΡΡΠΌ ΡΠ°ΡΡΠΈΡ. Π£ΠΠ ΡΠΎΡΠΌΠΈΡΡΡΡ ΡΠ°ΠΊΡΡ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΌΠ°ΡΡΡ ΡΠ°ΡΡΠΈΡ ΠΎΡ ΡΠΊΠΎΡΠΎΡΡΠ΅ΠΉ ΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΡΠ°ΡΡΠΈΡ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°Π΅Ρ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΠ΅ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠΈ. Π£ΠΠ ΠΏΠΎΡΠΎΠΆΠ΄Π°ΡΡ ΡΠΈΠ»ΠΎΠ²ΡΠ΅ ΠΏΠΎΠ»Ρ, Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΊΠΎΡΠΎΡΡΡ
ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΠΈΡ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ°ΡΡΠΈΡΠ°ΠΌΠΈ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΌΠ°ΡΡΠ° ΡΠ°ΡΡΠΈΡΡ Π·Π°Π²ΠΈΡΠΈΡ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ ΠΎΡ ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ°ΡΡΠΈΡΡ, ΠΊΠ°ΠΊ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π»ΠΎΡΡ Π² ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠΈΡ
ΡΠ°Π±ΠΎΡΠ°Ρ
, Π½ΠΎ ΠΈ ΠΎΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°ΡΡΠΈΡΡ Π² ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅, Ρ.Π΅. ΠΌΠ°ΡΡΠ° ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΡΠ½ΠΊΡΠΈΠ΅ΠΉ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΉ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ. Π‘ΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΠ΅ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΌΠ°ΡΡΡ ΡΠ°ΡΡΠΈΡΡ ΠΎΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°ΡΡΠΈΡΡ Π² ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅ ΠΈΠΌΠ΅Π΅Ρ Π±ΠΎΠ»ΡΡΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π΄Π»Ρ ΡΠ²ΠΎΠ»ΡΡΠΈΠΈ ΠΌΠ°ΡΠ΅ΡΠΈΠΈ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΡΡΠ΅Π·Π²ΡΡΠ°ΠΉΠ½ΠΎ ΡΠ°ΡΡΠΈΡΡΡΡΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΠΌΠ°ΡΠ΅ΡΠΈΠΈ ΠΏΠΎ ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΈ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π·Π²ΠΈΡΠΈΡ Π΅Π΅ ΡΡΡΡΠΊΡΡΡΠ½ΡΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ². ΠΠ· ΡΡΠ»ΠΎΠ²ΠΈΡ ΡΠΎΡ
ΡΠ°Π½Π΅Π½ΠΈΡ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΡΠ°ΡΡΠΈΡΡ Π²ΡΠ²Π΅Π΄Π΅Π½ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π»Ρ ΠΌΠ°ΡΡΡ. ΠΠ½ΠΎ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ° Ρ ΡΠ°ΡΡΠ½ΡΠΌΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠΌΠΈ. Π ΡΠ°ΡΡΠ½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅, ΠΊΠΎΠ³Π΄Π° ΠΌΠ°ΡΡΠ° ΡΠ°ΡΡΠΈΡΡ Π½Π΅ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°ΡΡΠΈΡΡ Π² ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅, ΡΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠ΅Ρ
ΠΎΠ΄ΠΈΡ Π² ΠΎΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΠΎΠ΅ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ°, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ΅ ΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π½ΠΎΠ΅ Π² ΡΠ°Π±ΠΎΡΠ°Ρ
[14, 15]. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π»Ρ ΠΌΠ°ΡΡΡ ΡΠ°ΡΡΠΈΡΡ Π²ΡΡΡΡΠΏΠ°Π΅Ρ Π² ΡΠΎΠ»ΠΈ ΡΠ²ΠΎΠ΅ΠΎΠ±ΡΠ°Π·Π½ΠΎΠ³ΠΎ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΈΠ½ΡΠΈΠΏΠ° Π΄Π»Ρ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΡ
Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ ΡΠ°ΡΡΠΈΡΡ. ΠΠΎ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΌΡ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π»Ρ ΠΌΠ°ΡΡΡ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΠΎΡΠ»ΠΈΡΠ°Π΅ΡΡΡ ΠΎΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Π²ΡΠ½ΡΠΆΠ΄Π΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ. ΠΡΠ»ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π»Ρ ΠΌΠ°ΡΡΡ ΡΠ»ΡΠΆΠΈΡ Π΄Π»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΌΠ°ΡΡΡ ΠΊΠ°ΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ°ΡΡΠΈΡΡ, ΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ Π²ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠ°ΠΌΠΎΠ³ΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΡ
Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ ΠΈ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΡ
ΠΈ Π²ΡΠ½ΡΠΆΠ΄Π΅Π½Π½ΡΡ
Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ²Π»ΡΡΡΡΡ Π΄ΠΈΠ°Π»Π΅ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΡΡΡΠΌΠΈ. ΠΠ΅ΠΆΠ΄Ρ ΡΠΈΠ»Π°ΠΌΠΈ, Π΄Π΅ΠΉΡΡΠ²ΡΡΡΠΈΠΌΠΈ Π½Π° ΡΠ°ΡΡΠΈΡΡ Π² Π²ΡΠ½ΡΠΆΠ΄Π΅Π½Π½ΠΎΠΌ ΠΈ Π² ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡΡ
, ΠΈΠΌΠ΅Π΅ΡΡΡ ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ΅ ΡΠ°Π·Π»ΠΈΡΠΈΠ΅: Π² Π²ΡΠ½ΡΠΆΠ΄Π΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΡΠΈΠ»Π° ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠΈΡΠΈΠ½ΠΎΠΉ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ, Π° Π² ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΠΎΠΌ β ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ΠΌ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ. ΠΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΌΠ°ΡΡΡ ΡΠ°ΡΡΠΈΡΡ ΠΏΡΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°ΡΡΠΈΡΡ Π² ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅ Π²ΡΠ·ΡΠ²Π°Π΅Ρ Π½Π΅ΠΎΠ΄Π½ΠΎΡΠΎΠ΄Π½ΠΎΡΡΡ ΠΈ Π½Π΅ΠΈΠ·ΠΎΡΡΠΎΠΏΠ½ΠΎΡΡΡ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π° ΠΈ Π½Π΅ΠΎΠ΄Π½ΠΎΡΠΎΠ΄Π½ΠΎΡΡΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. Π‘ΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½ Π½ΠΎΠ²ΡΠΉ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ Π² ΡΠ΅Π»ΡΡΠΈΠ²ΠΈΡΡΡΠΊΠΎΠΉ ΠΌΠ΅Ρ
Π°Π½ΠΈΠΊΠ΅, Π² ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΎΡΡΡΡΡΡΠ²ΡΡΡ ΡΡΡΠ΄Π½ΠΎΡΡΠΈ Ρ Π½Π΅ΠΏΠΎΠ»Π½ΠΎΡΠΎΠΉ ΡΠ΅ΠΎΡΠΈΠΈ, ΠΏΡΠΈΡΡΡΠΈΠ΅ Π‘Π’Π. Π ΠΎΡΠ»ΠΈΡΠΈΠ΅ ΠΎΡ Π‘Π’Π, Π² ΡΠ°Π·Π²ΠΈΠ²Π°Π΅ΠΌΠΎΠΉ Π·Π΄Π΅ΡΡ ΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²ΠΊΠ΅ ΠΌΠ΅Ρ
Π°Π½ΠΈΠΊΠΈ ΡΡΠΈΡΡΠ²Π°ΡΡΡΡ ΠΊΠ°ΠΊ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ°ΡΡΠΈΡ, ΡΠ°ΠΊ ΠΈ Π²ΡΠ½ΡΠΆΠ΄Π΅Π½Π½ΡΠ΅; Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡΡΡ Π½Π΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΡ
, Π³ΠΎΠ»ΡΡ
ΡΠ°ΡΡΠΈΡ, Π½Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΡΡΠΈΠ΅ Π² ΠΏΡΠΈΡΠΎΠ΄Π΅, Π° ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ (Π£ΠΠ) β Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π°Π»ΡΠ½ΡΡ
, ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ°ΡΡΠΈΡ; Π½Π΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΎ ΡΠΎΠΌ, ΡΡΠΎ ΠΌΠ°ΡΡΠ° ΡΠ°ΡΡΠΈΡΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠΎΡΡΠΎΡΠ½Π½ΡΠΌ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠΌ; ΠΌΠ°ΡΡΠ° Π²ΡΡΡΡΠΏΠ°Π΅Ρ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ; ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½Π°Ρ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΌΠ°ΡΡΡ ΡΠ°ΡΡΠΈΡΡ ΠΎΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠΎΡΠΌΠΈΡΡΠ΅ΡΡΡ ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΠΌΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡΠΌΠΈ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ Π΄Π»Ρ ΠΌΠ°ΡΡΡ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π°ΡΠ°Π½ΡΠΈΡΡΠ΅Ρ ΡΠΎΡ
ΡΠ°Π½Π΅Π½ΠΈΠ΅ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΡΠ°ΡΡΠΈΡΡ (Π² ΠΎΡΡΡΡΡΡΠ²ΠΈΠ΅ Π²Π½Π΅ΡΠ½Π΅Π³ΠΎ ΠΏΠΎΠ»Ρ). ΠΠ° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΌΠΎΠΆΠ½ΠΎ ΡΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°ΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΉ Π²ΡΠ²ΠΎΠ΄. ΠΡΠΈΡΠΈΠ½ΠΎΠΉ ΠΊΡΠΈΠ·ΠΈΡΠ° ΡΠΈΠ·ΠΈΠΊΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ Π‘Π’Π, ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Π°Ρ Π² ΠΎΡΠ½ΠΎΠ²Ρ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ. Π‘Π’Π ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ Π°Π±ΡΡΡΠ°ΠΊΡΠ½ΡΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΡΡ ΡΡ
Π΅ΠΌΡ, ΠΊΠΎΡΠΎΡΠ°Ρ Π²ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ Π΅Π΅ Π½Π΅ΠΏΠΎΠ»Π½ΠΎΡΡ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ ΠΎΠΏΠΈΡΡΠ²Π°ΡΡ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΡΡ ΡΠ΅Π°Π»ΡΠ½ΠΎΡΡΡ. ΠΠ°ΡΠ΅ΡΠΈΡ, ΠΊΠ°ΠΊ ΡΠ°ΠΌΠΎΠΎΡΠ³Π°Π½ΠΈΠ·ΡΡΡΠ°ΡΡΡ, ΡΠ°ΠΌΠΎΡΠΏΡΠ°Π²Π»ΡΠ΅ΠΌΠ°Ρ, ΠΌΡΡΠ»ΡΡΠ°Ρ ΡΡΡΠ½ΠΎΡΡΡ, ΠΏΡΠ΅Π΄ΠΏΠΎΡΠΈΡΠ°Π΅Ρ ΡΠ°Π·Π²ΠΈΠ²Π°ΡΡΡΡ ΡΠΎΠ²Π΅ΡΡΠ΅Π½Π½ΠΎ ΠΈΠ½Π°ΡΠ΅, ΡΠ΅ΠΌ ΠΏΡΠ΅Π΄ΠΏΠΈΡΡΠ²Π°Π΅Ρ Π΅ΠΉ Π‘Π’Π. Π Π°Π±ΠΎΡΠ° ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ΠΌ ΠΈ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠ΅Π½ΠΈΠ΅ΠΌ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ [22, 23] Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΠΊΠ²Π°Π½ΡΠΎΠ²ΠΎΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ
Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ ΠΠΈΡΠ°ΠΊΠ°: ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΡ
Physical consequences of the solution to the problem, formulated by P.A.M.Dirac more than 50 years ago [1-4], are discussed. According to our results on the Dirac problem, presented in [5-7], the reason for the difficulties of electrodynamics is the incompleteness of Newtonian mechanics and Maxwell's electrodynamics. Incompleteness of the theory derives from the fact that a huge class of motions of material particles, which we call the curvilinear motions by inertia (CMI), dropped out of the field of view of the conventional approach. In the conventional formulation of the theory, some restrictions (bans) are imposed on the motions of particles, which are not consistent with the basic laws of nature - the laws of dialectics and do not follow from experimental data. These restrictions have played in physics a role of heavy chains that have led physics, to a great extent, to the current crisis.
The CMI (curvilinear motions by inertia) are natural generalizations of the inertial motions, defined by the Galilee inertia principle, to the case of motions along curved paths. These motions fell out of the field of view of Newtonian scheme of mechanics because of motion restrictions used in the scheme. On the particle, moving by inertia with acceleration, a force acts (we call it the inertia force) which in contrast to the Newtonian inertial force does not depend on the external force acting on particle on the part of its environment. Because the accelerated motions of particles can be not only the forced motions caused by an external force but also the inertial motions, the interaction force between the particles does not obey the Coulomb law. For this reason, the equations of motion of electromagnetic field significantly differ from the Maxwell equations.
On the basis of the CMI of classical particle and without using the hypothesis of the existence of electrical charges that create the Coulomb field, the electromagnetic field equations are obtained. Classical particles moving along a curved path by inertia are shown to generate the induced electric and magnetic charges. Their peculiarity consists in that they are not localized on the particle generating electromagnetic field, but are distributed, Β«smearedΒ» in the region of space in which the particle moves with acceleration by inertia.
Contrary to generally accepted ideas, the laws of Newton underlying the classical mechanics are applicable only to macroscopic bodies, which are subject to the condition that the force field generated by body has the properties of an external field. Due to the existence of the CMI, the individual particles do not satisfy this condition. For this reason, their behavior can not be described by the Newton laws. In particular, contrary to the second Newtonβs law, the individual particles can move by inertia with acceleration in the absence of external force.
It follows from the results obtained that there exists a qualitatively new model of atom in which the bound state of classical particles is ensured by inertial forces acting on the particles moving by inertia with acceleration rather than by the Coulomb forces.
The mechanism of formation of bound state of two particles due to the curvilinear motion of particles by inertia explains the phenomenon of cold nuclear fusion (CNF), which can not be explained within the framework of standard theory because of its incompleteness.
Solution of the Dirac problem based on the CMI can be a turning point in the development of physics. Removing unjustified restrictions on the motion and practical mastering the CMI will give a powerful impetus to the development of science and technology, leading to the construction of a new physical picture of the world and the creation of qualitatively new technologies in the field of energy, transport, communications.ΠΠ±ΡΡΠΆΠ΄Π°ΡΡΡΡ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΡ, Π²ΡΡΠ΅ΠΊΠ°ΡΡΠΈΠ΅ ΠΈΠ· ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ, ΡΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ Π.Π.Π. ΠΠΈΡΠ°ΠΊΠΎΠΌ Π±ΠΎΠ»Π΅Π΅ 50 Π»Π΅Ρ Π½Π°Π·Π°Π΄ [1β4]. Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ ΠΠΈΡΠ°ΠΊΠ° ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΎ Π² ΡΠ°Π±ΠΎΡΠ°Ρ
[5-7], Π² ΠΊΠΎΡΠΎΡΡΡ
ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΈΡΠΈΠ½ΠΎΠΉ ΡΡΡΠ΄Π½ΠΎΡΡΠ΅ΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π΅ΠΏΠΎΠ»Π½ΠΎΡΠ° ΠΌΠ΅Ρ
Π°Π½ΠΈΠΊΠΈ ΠΡΡΡΠΎΠ½Π° ΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ ΠΠ°ΠΊΡΠ²Π΅Π»Π»Π°. ΠΠ΅ΠΏΠΎΠ»Π½ΠΎΡΠ° ΡΠ΅ΠΎΡΠΈΠΈ ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½Π° ΡΠ΅ΠΌ, ΡΡΠΎ ΠΈΠ· ΠΏΠΎΠ»Ρ Π·ΡΠ΅Π½ΠΈΡ ΠΎΠ±ΡΠ΅ΠΏΡΠΈΠ½ΡΡΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π° Π²ΡΠΏΠ°Π» ΠΎΠ³ΡΠΎΠΌΠ½ΡΠΉ ΠΊΠ»Π°ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΡ
ΡΠ°ΡΡΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΡ Π½Π°Π·ΡΠ²Π°Π΅ΠΌ ΠΊΡΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΡΠΌΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡΠΌΠΈ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ (ΠΠΠ). Π ΠΎΠ±ΡΠ΅ΠΏΡΠΈΠ½ΡΡΠΎΠΉ ΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²ΠΊΠ΅ ΡΠ΅ΠΎΡΠΈΠΈ Π½Π° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ°ΡΡΠΈΡ Π½Π°ΠΊΠ»Π°Π΄ΡΠ²Π°ΡΡΡΡ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΈΡ (Π·Π°ΠΏΡΠ΅ΡΡ), ΠΊΠΎΡΠΎΡΡΠ΅ Π½Π΅ ΡΠ»Π΅Π΄ΡΡΡ ΠΈΠ· ΠΎΠΏΡΡΠ½ΡΡ
Π΄Π°Π½Π½ΡΡ
ΠΈ Π½Π΅ ΡΠΎΠ³Π»Π°ΡΡΡΡΡΡ Ρ ΠΎΡΠ½ΠΎΠ²Π½ΡΠΌΠΈ Π·Π°ΠΊΠΎΠ½Π°ΠΌΠΈ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΏΡΠΈΡΠΎΠ΄Ρ β Π·Π°ΠΊΠΎΠ½Π°ΠΌΠΈ Π΄ΠΈΠ°Π»Π΅ΠΊΡΠΈΠΊΠΈ. ΠΡΠΈ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΈΡ ΡΡΠ³ΡΠ°Π»ΠΈ Π² ΡΠΈΠ·ΠΈΠΊΠ΅ ΡΠΎΠ»Ρ ΡΡΠΆΠΊΠΈΡ
ΠΎΠΊΠΎΠ², ΠΊΠΎΡΠΎΡΡΠ΅, Π² Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΌΠ΅ΡΠ΅, ΠΈ ΠΏΡΠΈΠ²Π΅Π»ΠΈ ΡΠΈΠ·ΠΈΠΊΡ ΠΊ Π½ΡΠ½Π΅ΡΠ½Π΅ΠΌΡ ΠΊΡΠΈΠ·ΠΈΡΠ½ΠΎΠΌΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ. ΠΠΠ (ΠΊΡΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ) ΡΠ²Π»ΡΡΡΡΡ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠΌ ΠΎΠ±ΠΎΠ±ΡΠ΅Π½ΠΈΠ΅ΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ, ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΡ
ΠΏΡΠΈΠ½ΡΠΈΠΏΠΎΠΌ ΠΈΠ½Π΅ΡΡΠΈΠΈ ΠΠ°Π»ΠΈΠ»Π΅Ρ, Π½Π° ΡΠ»ΡΡΠ°ΠΉ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ ΠΏΠΎ ΠΊΡΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΡΠΌ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΡΠΌ. Π£ΠΊΠ°Π·Π°Π½Π½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π²ΡΠΏΠ°Π΄Π°ΡΡ ΠΈΠ· ΡΡ
Π΅ΠΌΡ ΠΌΠ΅Ρ
Π°Π½ΠΈΠΊΠΈ ΠΡΡΡΠΎΠ½Π° Π²ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ ΡΠ΅Ρ
ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΈΠΉ Π½Π° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ Π² ΡΡΠΎΠΉ ΡΡ
Π΅ΠΌΠ΅. ΠΠ° ΡΠ°ΡΡΠΈΡΡ, Π΄Π²ΠΈΠΆΡΡΡΡΡΡ ΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ, Π΄Π΅ΠΉΡΡΠ²ΡΠ΅Ρ ΡΠΈΠ»Π° (ΠΌΡ Π½Π°Π·ΡΠ²Π°Π΅ΠΌ Π΅Π΅ ΡΠΈΠ»ΠΎΠΉ ΠΈΠ½Π΅ΡΡΠΈΠΈ), ΠΊΠΎΡΠΎΡΠ°Ρ, Π² ΠΎΡΠ»ΠΈΡΠΈΠ΅ ΠΎΡ ΠΡΡΡΠΎΠ½ΠΎΠ²ΡΠΊΠΎΠΉ ΡΠΈΠ»Ρ ΠΈΠ½Π΅ΡΡΠΈΠΈ, Π½Π΅ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ Π²Π½Π΅ΡΠ½Π΅ΠΉ ΡΠΈΠ»Ρ, Π΄Π΅ΠΉΡΡΠ²ΡΡΡΠ΅ΠΉ Π½Π° ΡΠ°ΡΡΠΈΡΡ ΡΠΎ ΡΡΠΎΡΠΎΠ½Ρ ΠΎΠΊΡΡΠΆΠ΅Π½ΠΈΡ. ΠΠ²ΠΈΠ΄Ρ ΡΠΎΠ³ΠΎ, ΡΡΠΎ ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ°ΡΡΠΈΡΡ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ Π²ΡΠ½ΡΠΆΠ΄Π΅Π½Π½ΡΠΌΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡΠΌΠΈ, Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡΡΠΈΠΌΠΈ ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ Π²Π½Π΅ΡΠ½Π΅ΠΉ ΡΠΈΠ»Ρ, Π½ΠΎ ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡΠΌΠΈ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ, ΡΠΈΠ»Π° Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ°ΡΡΠΈΡΠ°ΠΌΠΈ Π½Π΅ ΠΏΠΎΠ΄ΡΠΈΠ½ΡΠ΅ΡΡΡ Π·Π°ΠΊΠΎΠ½Ρ ΠΡΠ»ΠΎΠ½Π°. ΠΠΎ ΡΡΠΎΠΉ ΠΏΡΠΈΡΠΈΠ½Π΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΠΎΡΠ»ΠΈΡΠ°ΡΡΡΡ ΠΎΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΠ°ΠΊΡΠ²Π΅Π»Π»Π°. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ Π²ΡΠ²Π΅Π΄Π΅Π½Ρ ΠΈΠ· ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½ΠΈΡ ΠΠΠ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ°ΡΡΠΈΡΡ, Π±Π΅Π· ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ Π³ΠΈΠΏΠΎΡΠ΅Π·Ρ ΠΎ ΡΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΠΈ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π·Π°ΡΡΠ΄ΠΎΠ², ΡΠΎΠ·Π΄Π°ΡΡΠΈΡ
ΠΊΡΠ»ΠΎΠ½ΠΎΠ²ΡΠΊΠΎΠ΅ ΠΏΠΎΠ»Π΅. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ°ΡΡΠΈΡΡ, Π΄Π²ΠΈΠΆΡΡΠΈΠ΅ΡΡ ΠΏΠΎ ΠΊΡΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΠΈ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ, ΠΏΠΎΡΠΎΠΆΠ΄Π°ΡΡ ΠΈΠ½Π΄ΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈ ΠΌΠ°Π³Π½ΠΈΡΠ½ΡΠ΅ Π·Π°ΡΡΠ΄Ρ. ΠΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΡ ΠΏΠΎΡΠ»Π΅Π΄Π½ΠΈΡ
ΡΠΎΡΡΠΎΠΈΡ Π² ΡΠΎΠΌ, ΡΡΠΎ ΠΎΠ½ΠΈ Π½Π΅ Π»ΠΎΠΊΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Ρ Π½Π° ΡΠ°ΡΡΠΈΡΠ΅, ΠΏΠΎΡΠΎΠΆΠ΄Π°ΡΡΠ΅ΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ΅ ΠΏΠΎΠ»Π΅, Π° ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ, Β«ΡΠ°Π·ΠΌΠ°Π·Π°Π½ΡΒ» Π² ΡΠΎΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π°, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ°ΡΡΠΈΡΡ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ. ΠΠΎΠΏΡΠ΅ΠΊΠΈ ΠΎΠ±ΡΠ΅ΠΏΡΠΈΠ½ΡΡΡΠΌ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΡΠΌ, Π·Π°ΠΊΠΎΠ½Ρ ΠΡΡΡΠΎΠ½Π°, Π»Π΅ΠΆΠ°ΡΠΈΠ΅ Π² ΠΎΡΠ½ΠΎΠ²Π΅ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠ΅Ρ
Π°Π½ΠΈΠΊΠΈ, ΠΏΡΠΈΠΌΠ΅Π½ΠΈΠΌΡ ΡΠΎΠ»ΡΠΊΠΎ ΠΊ ΠΌΠ°ΠΊΡΠΎΡΠΊΠΎΠΏΠΈΡΠ΅ΡΠΊΠΈΠΌ ΡΠ΅Π»Π°ΠΌ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΠΎΠ΄ΡΠΈΠ½ΡΡΡΡΡ ΡΡΠ»ΠΎΠ²ΠΈΡ, ΡΡΠΎΠ±Ρ ΡΠΈΠ»ΠΎΠ²ΠΎΠ΅ ΠΏΠΎΠ»Π΅, ΡΠΎΠ·Π΄Π°Π²Π°Π΅ΠΌΠΎΠ΅ ΡΠ΅Π»ΠΎΠΌ, ΠΎΠ±Π»Π°Π΄Π°Π»ΠΎ ΡΠ²ΠΎΠΉΡΡΠ²Π°ΠΌΠΈ Π²Π½Π΅ΡΠ½Π΅Π³ΠΎ ΠΏΠΎΠ»Ρ. ΠΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ ΡΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΡ ΠΠΠ, ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΠ΅ ΡΠ°ΡΡΠΈΡΡ Π½Π΅ ΡΠ΄ΠΎΠ²Π»Π΅ΡΠ²ΠΎΡΡΡΡ ΡΡΠΎΠΌΡ ΡΡΠ»ΠΎΠ²ΠΈΡ ΠΈ ΠΏΠΎΡΡΠΎΠΌΡ ΠΈΡ
ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ ΠΎΠΏΠΈΡΡΠ²Π°ΡΡΡΡ Π·Π°ΠΊΠΎΠ½Π°ΠΌΠΈ ΠΡΡΡΠΎΠ½Π°. Π’Π°ΠΊ, Π²ΠΎΠΏΡΠ΅ΠΊΠΈ Π²ΡΠΎΡΠΎΠΌΡ Π·Π°ΠΊΠΎΠ½Ρ ΠΡΡΡΠΎΠ½Π°, ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΠ΅ ΡΠ°ΡΡΠΈΡΡ ΠΌΠΎΠ³ΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ°ΡΡΡΡ ΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ Π² ΠΎΡΡΡΡΡΡΠ²ΠΈΠ΅ Π²Π½Π΅ΡΠ½Π΅ΠΉ ΡΠΈΠ»Ρ. ΠΠ· ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΡΠ°Π±ΠΎΡΡ ΡΠ»Π΅Π΄ΡΠ΅Ρ ΡΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ Π½ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π°ΡΠΎΠΌΠ°, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠ²ΡΠ·Π°Π½Π½ΠΎΠ΅ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ°ΡΡΠΈΡ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°Π΅ΡΡΡ Π½Π΅ ΠΊΡΠ»ΠΎΠ½ΠΎΠ²ΡΠΊΠΈΠΌΠΈ ΡΠΈΠ»Π°ΠΌΠΈ, Π° ΡΠΈΠ»Π°ΠΌΠΈ ΠΈΠ½Π΅ΡΡΠΈΠΈ, Π΄Π΅ΠΉΡΡΠ²ΡΡΡΠΈΠΌΠΈ Π½Π° ΡΠ°ΡΡΠΈΡΡ Π² ΠΈΡ
ΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ. ΠΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²ΡΠ·Π°Π½Π½ΠΎΠ³ΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ Π΄Π²ΡΡ
ΡΠ°ΡΡΠΈΡ, ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½Π½ΡΠΉ ΠΊΡΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΡΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ ΡΠ°ΡΡΠΈΡ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ, ΠΎΠ±ΡΡΡΠ½ΡΠ΅Ρ ΡΠ²Π»Π΅Π½ΠΈΠ΅ Ρ
ΠΎΠ»ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠΈΠ½ΡΠ΅Π·Π° ΡΠ΄Π΅Ρ (Π₯Π‘Π―), ΠΊΠΎΡΠΎΡΠΎΠ΅ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠ±ΡΡΡΠ½ΠΈΡΡ Π² ΡΠ°ΠΌΠΊΠ°Ρ
ΠΎΠ±ΡΠ΅ΠΏΡΠΈΠ½ΡΡΠΎΠΉ ΡΠ΅ΠΎΡΠΈΠΈ ΠΈΠ·-Π·Π° Π΅Π΅ Π½Π΅ΠΏΠΎΠ»Π½ΠΎΡΡ. Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ ΠΠΈΡΠ°ΠΊΠ° Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΠΠ ΠΌΠΎΠΆΠ΅Ρ ΠΎΠΊΠ°Π·Π°ΡΡΡΡ ΠΏΠ΅ΡΠ΅Π»ΠΎΠΌΠ½ΡΠΌ ΠΌΠΎΠΌΠ΅Π½ΡΠΎΠΌ Π² ΡΠ°Π·Π²ΠΈΡΠΈΠΈ ΡΠΈΠ·ΠΈΠΊΠΈ. Π‘Π½ΡΡΠΈΠ΅ Π½Π΅ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½Π½ΡΡ
Π·Π°ΠΏΡΠ΅ΡΠΎΠ² Π½Π° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΈ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΠ²Π»Π°Π΄Π΅Π½ΠΈΠ΅ ΠΠΠ Π΄Π°ΡΡ ΠΌΠΎΡΠ½ΡΠΉ ΠΈΠΌΠΏΡΠ»ΡΡ ΡΠ°Π·Π²ΠΈΡΠΈΡ Π½Π°ΡΠΊΠΈ ΠΈ ΡΠ΅Ρ
Π½ΠΈΠΊΠΈ, ΠΏΡΠΈΠ²Π΅Π΄Ρ ΠΊ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π½ΠΎΠ²ΠΎΠΉ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΊΠ°ΡΡΠΈΠ½Ρ ΠΌΠΈΡΠ° ΠΈ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ Π½ΠΎΠ²ΡΡ
ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΠΊΠΈ, ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ°, ΡΡΠ΅Π΄ΡΡΠ² ΡΠ²ΡΠ·ΠΈ
ΠΡΠΎΠ±Π»Π΅ΠΌΠ° ΠΠΈΡΠ°ΠΊΠ°, ΡΠ°ΡΡΡ 2. ΠΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ΅ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΠΊΠ°ΠΊ ΠΏΡΡΠΌΠΎΠ΅ ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ Π·Π°ΠΊΠΎΠ½ΠΎΠ² ΠΌΠ΅Ρ Π°Π½ΠΈΠΊΠΈ
It is shown that electromagnetic interaction is not a special kind of interaction between material particles. Electromagnetic field equations are obtained as a direct consequence of the laws of mechanics. They are derived from consideration of the curvilinear motion of a classical particle by inertia, without resorting to the hypothesis of the existence of electrical charges that can generate the Coulomb field. At the specified motion, both the electric and magnetic charges are induced by particle. The peculiarity of the induced charges is that they are not localized on the particle generating electromagnetic field, but are Β«smeared outΒ» in the space region in which the particle motion by inertia takes place. The presence of the induced magnetic charge means that the magnetic field generated by moving particle contains the unusual scalar (potential) component, in addition to the usual vortex one. The existence of scalar component of the magnetic field was first discovered by G. V. Nikolaev [1-3]. According to his results, taking into account the scalar component of the magnetic field allows one to remove a lot of difficulties of standard electrodynamics and to explain a number of experimental facts that can not be explained, while remaining within the rooted ideas of electrodynamics.ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ΅ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ Π½Π΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΡΠΎΠ±ΡΠΌ Π²ΠΈΠ΄ΠΎΠΌ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΠΌΠΈ ΡΠ°ΡΡΠΈΡΠ°ΠΌΠΈ. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ ΠΊΠ°ΠΊ ΠΏΡΡΠΌΠΎΠ΅ ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ Π·Π°ΠΊΠΎΠ½ΠΎΠ² ΠΌΠ΅Ρ
Π°Π½ΠΈΠΊΠΈ. ΠΠ½ΠΈ Π²ΡΠ²Π΅Π΄Π΅Π½Ρ ΠΈΠ· ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½ΠΈΡ ΠΊΡΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ°ΡΡΠΈΡΡ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ, Π±Π΅Π· ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ Π³ΠΈΠΏΠΎΡΠ΅Π·Ρ ΠΎ ΡΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΠΈ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π·Π°ΡΡΠ΄ΠΎΠ², ΡΠΏΠΎΡΠΎΠ±Π½ΡΡ
ΠΏΠΎΡΠΎΠΆΠ΄Π°ΡΡ ΠΊΡΠ»ΠΎΠ½ΠΎΠ²ΡΠΊΠΎΠ΅ ΠΏΠΎΠ»Π΅. ΠΡΠΈ ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΈΠ½Π΄ΡΡΠΈΡΡΡΡΡΡ ΠΊΠ°ΠΊ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ, ΡΠ°ΠΊ ΠΈ ΠΌΠ°Π³Π½ΠΈΡΠ½ΡΠΉ Π·Π°ΡΡΠ΄Ρ ΡΠ°ΡΡΠΈΡΡ. ΠΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΡ ΠΈΠ½Π΄ΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
Π·Π°ΡΡΠ΄ΠΎΠ² ΡΠΎΡΡΠΎΠΈΡ Π² ΡΠΎΠΌ, ΡΡΠΎ ΠΎΠ½ΠΈ Π½Π΅ Π»ΠΎΠΊΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Ρ Π½Π° ΡΠ°ΡΡΠΈΡΠ΅, ΠΏΠΎΡΠΎΠΆΠ΄Π°ΡΡΠ΅ΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ΅ ΠΏΠΎΠ»Π΅, Π° Β«ΡΠ°Π·ΠΌΠ°Π·Π°Π½ΡΒ» Π² ΡΠΎΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π°, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ°ΡΡΠΈΡΡ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ. ΠΠ°Π»ΠΈΡΠΈΠ΅ ΠΈΠ½Π΄ΡΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ Π·Π°ΡΡΠ΄Π° ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ, ΡΡΠΎ ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ΅ ΠΏΠΎΠ»Π΅, ΠΏΠΎΡΠΎΠΆΠ΄Π΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΡΡΠ΅ΠΉΡΡ ΡΠ°ΡΡΠΈΡΠ΅ΠΉ, ΡΠΎΠ΄Π΅ΡΠΆΠΈΡ, ΠΏΠΎΠΌΠΈΠΌΠΎ ΠΎΠ±ΡΡΠ½ΠΎΠΉ Π²ΠΈΡ
ΡΠ΅Π²ΠΎΠΉ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΡ, Π½Π΅ΠΎΠ±ΡΡΠ½ΡΡ ΡΠΊΠ°Π»ΡΡΠ½ΡΡ (ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΡ) ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΡ. ΠΠ° ΡΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠΊΠ°Π»ΡΡΠ½ΠΎΠΉ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΡ ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ Π²ΠΏΠ΅ΡΠ²ΡΠ΅ ΡΠΊΠ°Π·Π°Π» Π.Π. ΠΠΈΠΊΠΎΠ»Π°Π΅Π² [1-3]. Π‘ΠΎΠ³Π»Π°ΡΠ½ΠΎ Π΅Π³ΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌ, ΡΡΠ΅Ρ ΡΠΊΠ°Π»ΡΡΠ½ΠΎΠΉ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΡ ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΡΡΡΠ°Π½ΠΈΡΡ ΠΌΠ½ΠΎΠ³ΠΈΠ΅ ΡΡΡΠ΄Π½ΠΎΡΡΠΈ ΠΎΠ±ΡΠ΅ΠΏΡΠΈΠ½ΡΡΠΎΠΉ ΡΠ΅ΠΎΡΠΈΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ ΠΈ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΠΎΠ±ΡΡΡΠ½Π΅Π½ΠΈΠ΅ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ
ΡΠ°ΠΊΡΠΎΠ², ΠΊΠΎΡΠΎΡΡΠ΅ Π½Π΅ ΡΠ΄Π°Π΅ΡΡΡ ΠΎΠ±ΡΡΡΠ½ΠΈΡΡ, ΠΎΡΡΠ°Π²Π°ΡΡΡ Π² ΡΠ°ΠΌΠΊΠ°Ρ
ΡΠΊΠΎΡΠ΅Π½ΠΈΠ²ΡΠΈΡ
ΡΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ
Π€ΠΈΠ·ΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΏΡΠΈΡΠΎΠ΄Π° ΠΌΠ°ΡΡΡ ΡΠ°ΡΡΠΈΡΡ. Π Π΅Π»ΡΡΠΈΠ²ΠΈΡΡΡΠΊΠ°Ρ ΠΌΠ΅Ρ Π°Π½ΠΈΠΊΠ° Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ
The paper is devoted to solving the central problem of physics β the problem of motion. The physical nature of particle mass is revealed from the point of view of mechanics. A differential equation for the particle mass m is obtained, which determines the dependence of the mass on the motion velocity v: m=m(v). The particle is con-sidered as the simplest structural element of moving matter, capable of its own accelerated motions in the ab-sence of external fields acting on the particle. These motions are responsible for the formation of the de-pendence of mass on velocity. The equation for the particle mass follows from the condition of stable development of moving matter. The dependence m=m(v) is investigated both for a nonrelativistic particle and for a relativistic particle. According to the results obtained, the equation for the mass of relativistic particle differs significantly from the corresponding equation describing nonrelativistic particle. This is explained by the fact that the process of mass formation of particle proceeds differently when moving in Euclidean space and in 4-dimensional space-time. When relativistic particle moves by inertia, i.e. in the absence of external fields, the particle's connection with the space-time in which the motion occurs is significant. Due to this connection, the particle has a rest energy, which manifests itself in the formation of the dependence of mass on velocity.
There are two types of accelerated motions of matter β forced motions (FM) and proper motions (PM) of the structural elements of matter (particles). The difference between them is that FM are performed under the action of external forces, i.e. are a consequence of the action of external forces causing acceleration, and PM, being an attribute of matter, do not have a reason for their appearance in the form of a force acting on the particle. A force acts on the particle that performs PM (we call it the force of inertia), but it is a consequence of accelerated PM, and not their cause.
At present, the principle of least action (PLA) is widely used in theoretical studies. The analysis shows that the PLA has a limited range of applicability: it describes only FM, i.e. motions that occur under the action of an ex-ternal force, which is their cause. An attempt to apply the PLA to the proper motions of matter leads to motions of free particles that are incapable of anything other than a simple displacement in space with a constant velocity, i.e. to the motions of particles of dead matter. We emphasize that the real motions of particles by inertia, occurring in nature, are accelerated PM. The first to point out the motions of bodies by inertia as accelerated motions was Galileo Galilei who argued that the inertial motion is a uniform circular motion, for example, the motion of the Earth around the Sun [1,2].
Proper motions are primary, because they are an attribute of matter, and forced motions, being a consequence of the action of external fields, are secondary. Proper motions play a fundamental role in nature. They generate forces of inertia that form force fields, with the help of which matter observes the motions of its structural com-ponents, controls them, organizing and directing them to create new structures. It is these motions that are re-sponsible for the self-organization of matter, namely they generate consciousness and thinking. Thanks to its proper motions, matter generates the laws of nature, which each time bring to the amazement of the person who reveals them.Π Π°Π±ΠΎΡΠ° ΠΏΠΎΡΠ²ΡΡΠ΅Π½Π° ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ΅Π½ΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ ΡΠΈΠ·ΠΈΠΊΠΈ β ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ. Π Π°ΡΠΊΡΡΡΠ° ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΏΡΠΈΡΠΎΠ΄Π° ΠΌΠ°ΡΡΡ ΡΠ°ΡΡΠΈΡΡ Ρ ΡΠΎΡΠΊΠΈ Π·ΡΠ΅Π½ΠΈΡ ΠΌΠ΅Ρ
Π°Π½ΠΈΠΊΠΈ. ΠΠΎΠ»ΡΡΠ΅Π½ΠΎ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π»Ρ ΠΌΠ°ΡΡΡ ΡΠ°ΡΡΠΈΡΡ m, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΠ΅Π΅ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΌΠ°ΡΡΡ ΠΎΡ ΡΠΊΠΎΡΠΎΡΡΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ v: m=m(v). Π§Π°ΡΡΠΈΡΠ° ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΡΡΡ ΠΊΠ°ΠΊ ΠΏΡΠΎΡΡΠ΅ΠΉΡΠΈΠΉ ΡΡΡΡΠΊΡΡΡΠ½ΡΠΉ ΡΠ»Π΅ΠΌΠ΅Π½Ρ Π΄Π²ΠΈΠΆΡΡΠ΅ΠΉΡΡ ΠΌΠ°ΡΠ΅ΡΠΈΠΈ, ΡΠΏΠΎΡΠΎΠ±Π½ΡΠΉ ΠΊ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΠΌ ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡΠΌ Π² ΠΎΡΡΡΡΡΡΠ²ΠΈΠ΅ Π΄Π΅ΠΉΡΡΠ²ΡΡΡΠΈΡ
Π½Π° ΡΠ°ΡΡΠΈΡΡ Π²Π½Π΅ΡΠ½ΠΈΡ
ΠΏΠΎΠ»Π΅ΠΉ. Π£ΠΊΠ°Π·Π°Π½Π½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½Ρ Π·Π° ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΌΠ°ΡΡΡ ΠΎΡ ΡΠΊΠΎΡΠΎΡΡΠΈ. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π»Ρ ΠΌΠ°ΡΡΡ ΡΠ°ΡΡΠΈΡΡ ΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΈΠ· ΡΡΠ»ΠΎΠ²ΠΈΡ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π·Π²ΠΈΡΠΈΡ Π΄Π²ΠΈΠΆΡΡΠ΅ΠΉΡΡ ΠΌΠ°ΡΠ΅ΡΠΈΠΈ. ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ m=m(v) ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π° ΠΊΠ°ΠΊ Π΄Π»Ρ Π½Π΅ΡΠ΅Π»ΡΡΠΈΠ²ΠΈΡΡΡΠΊΠΎΠΉ ΡΠ°ΡΡΠΈΡΡ, ΡΠ°ΠΊ ΠΈ Π΄Π»Ρ ΡΠ΅Π»ΡΡΠΈΠ²ΠΈΡΡΡΠΊΠΎΠΉ. Π‘ΠΎΠ³Π»Π°ΡΠ½ΠΎ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠΌ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌ, ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π»Ρ ΠΌΠ°ΡΡΡ ΡΠ΅Π»ΡΡΠΈΠ²ΠΈΡΡΡΠΊΠΎΠΉ ΡΠ°ΡΡΠΈΡΡ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΠΎΡΠ»ΠΈΡΠ°Π΅ΡΡΡ ΠΎΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅Π³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ, ΠΎΠΏΠΈΡΡΠ²Π°ΡΡΠ΅Π³ΠΎ Π½Π΅ΡΠ΅Π»ΡΡΠΈΠ²ΠΈΡΡΡΠΊΡΡ ΡΠ°ΡΡΠΈΡΡ. ΠΡΠΎ ΠΎΠ±ΡΡΡΠ½ΡΠ΅ΡΡΡ ΡΠ΅ΠΌ, ΡΡΠΎ ΠΏΡΠΎΡΠ΅ΡΡ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΌΠ°ΡΡΡ ΡΠ°ΡΡΠΈΡΡ ΠΏΡΠΎΡΠ΅ΠΊΠ°Π΅Ρ ΠΏΠΎ-ΡΠ°Π·Π½ΠΎΠΌΡ ΠΏΡΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Π² Π΅Π²ΠΊΠ»ΠΈΠ΄ΠΎΠ²ΠΎΠΌ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅ ΠΈ Π² 4-ΠΌΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅-Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. ΠΡΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΡΠ΅Π»ΡΡΠΈΠ²ΠΈΡΡΡΠΊΠΎΠΉ ΡΠ°ΡΡΠΈΡΡ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ, Ρ.Π΅. Π² ΠΎΡΡΡΡΡΡΠ²ΠΈΠ΅ Π²Π½Π΅ΡΠ½ΠΈΡ
ΠΏΠΎΠ»Π΅ΠΉ, ΠΎΠΊΠ°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΡΠ²ΡΠ·Ρ ΡΠ°ΡΡΠΈΡΡ Ρ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²ΠΎΠΌ-Π²ΡΠ΅ΠΌΠ΅Π½Π΅ΠΌ, Π² ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠΠ»Π°Π³ΠΎΠ΄Π°ΡΡ ΡΡΠΎΠΉ ΡΠ²ΡΠ·ΠΈ ΡΠ°ΡΡΠΈΡΠ° ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ ΡΠ½Π΅ΡΠ³ΠΈΠ΅ΠΉ ΠΏΠΎΠΊΠΎΡ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΈ ΠΏΡΠΎΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠΈ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΌΠ°ΡΡΡ ΠΎΡ ΡΠΊΠΎΡΠΎΡΡΠΈ. Π‘ΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ Π΄Π²Π° ΡΠΈΠΏΠ° ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΡ
Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ ΠΌΠ°ΡΠ΅ΡΠΈΠΈ β Π²ΡΠ½ΡΠΆΠ΄Π΅Π½Π½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ (ΠΠ) ΠΈ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ (Π‘Π) ΡΡΡΡΠΊΡΡΡΠ½ΡΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΠΌΠ°ΡΠ΅ΡΠΈΠΈ (ΡΠ°ΡΡΠΈΡ). Π Π°Π·Π»ΠΈΡΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ Π½ΠΈΠΌΠΈ ΡΠΎΡΡΠΎΠΈΡ Π² ΡΠΎΠΌ, ΡΡΠΎ ΠΠ ΡΠΎΠ²Π΅ΡΡΠ°ΡΡΡΡ ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ Π²Π½Π΅ΡΠ½ΠΈΡ
ΡΠΈΠ», Ρ.Π΅. ΡΠ²Π»ΡΡΡΡΡ ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ΠΌ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Π²Π½Π΅ΡΠ½ΠΈΡ
ΡΠΈΠ», Π²ΡΠ·ΡΠ²Π°ΡΡΠΈΡ
ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅, Π° Π‘Π, Π±ΡΠ΄ΡΡΠΈ Π°ΡΡΠΈΠ±ΡΡΠΎΠΌ ΠΌΠ°ΡΠ΅ΡΠΈΠΈ, Π½Π΅ ΠΈΠΌΠ΅ΡΡ ΠΏΡΠΈΡΠΈΠ½Ρ ΡΠ²ΠΎΠ΅Π³ΠΎ ΠΏΠΎΡΠ²Π»Π΅Π½ΠΈΡ Π² Π²ΠΈΠ΄Π΅ ΡΠΈΠ»Ρ, Π΄Π΅ΠΉΡΡΠ²ΡΡΡΠ΅ΠΉ Π½Π° ΡΠ°ΡΡΠΈΡΡ. ΠΠ° ΡΠ°ΡΡΠΈΡΡ, ΡΠΎΠ²Π΅ΡΡΠ°ΡΡΡΡ Π‘Π, Π΄Π΅ΠΉΡΡΠ²ΡΠ΅Ρ ΡΠΈΠ»Π° (ΠΌΡ Π½Π°Π·ΡΠ²Π°Π΅ΠΌ Π΅Π΅ ΡΠΈΠ»ΠΎΠΉ ΠΈΠ½Π΅ΡΡΠΈΠΈ), Π½ΠΎ ΠΎΠ½Π° ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ΠΌ ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΡ
Π‘Π, Π° Π½Π΅ ΠΈΡ
ΠΏΡΠΈΡΠΈΠ½ΠΎΠΉ. Π Π½Π°ΡΡΠΎΡΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ Π² ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡΡ
ΡΠΈΡΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ ΠΏΡΠΈΠ½ΡΠΈΠΏ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π³ΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ (ΠΠΠ). ΠΠ½Π°Π»ΠΈΠ· ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ, ΡΡΠΎ ΠΠΠ ΠΈΠΌΠ΅Π΅Ρ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΡΡ ΠΎΠ±Π»Π°ΡΡΡ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΠΌΠΎΡΡΠΈ: ΠΎΠ½ ΠΎΠΏΠΈΡΡΠ²Π°Π΅Ρ Π»ΠΈΡΡ ΠΠ, Ρ.Π΅. Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΡΡ ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ Π²Π½Π΅ΡΠ½Π΅ΠΉ ΡΠΈΠ»Ρ, ΡΠ²Π»ΡΡΡΠ΅ΠΉΡΡ ΠΈΡ
ΠΏΡΠΈΡΠΈΠ½ΠΎΠΉ. ΠΠΎΠΏΡΡΠΊΠ° ΠΏΡΠΈΠΌΠ΅Π½ΠΈΡΡ ΠΠΠ ΠΊ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡΠΌ ΠΌΠ°ΡΠ΅ΡΠΈΠΈ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡΠΌ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΡ
ΡΠ°ΡΡΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ Π½Π΅ ΡΠΏΠΎΡΠΎΠ±Π½Ρ Π½ΠΈ Π½Π° ΡΡΠΎ ΠΈΠ½ΠΎΠ΅, ΠΊΡΠΎΠΌΠ΅ ΠΏΡΠΎΡΡΠΎΠ³ΠΎ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π² ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅ Ρ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ, Ρ.Π΅. ΠΊ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡΠΌ ΡΠ°ΡΡΠΈΡ ΠΌΠ΅ΡΡΠ²ΠΎΠΉ ΠΌΠ°ΡΠ΅ΡΠΈΠΈ. ΠΠΎΠ΄ΡΠ΅ΡΠΊΠ½Π΅ΠΌ, ΡΡΠΎ ΡΠ΅Π°Π»ΡΠ½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ°ΡΡΠΈΡ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ, ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΡΡΠΈΠ΅ Π² ΠΏΡΠΈΡΠΎΠ΄Π΅, ΡΠ²Π»ΡΡΡΡΡ ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΠΌΠΈ Π‘Π. ΠΠ° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π» ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ, ΠΊΠ°ΠΊ Π½Π° ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, Π²ΠΏΠ΅ΡΠ²ΡΠ΅ ΡΠΊΠ°Π·Π°Π» ΠΠ°Π»ΠΈΠ»Π΅ΠΎ ΠΠ°Π»ΠΈΠ»Π΅ΠΉ, ΠΊΠΎΡΠΎΡΡΠΉ ΡΡΠ²Π΅ΡΠΆΠ΄Π°Π», ΡΡΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ ΠΊΡΡΠ³ΠΎΠ²ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΠ΅ΠΌΠ»ΠΈ Π²ΠΎΠΊΡΡΠ³ Π‘ΠΎΠ»Π½ΡΠ° [1,2]. Π‘ΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΠ²ΠΈΡΠ½Ρ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠ²Π»ΡΡΡΡΡ Π°ΡΡΠΈΠ±ΡΡΠΎΠΌ ΠΌΠ°ΡΠ΅ΡΠΈΠΈ, Π° Π²ΡΠ½ΡΠΆΠ΄Π΅Π½Π½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, Π±ΡΠ΄ΡΡΠΈ ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ΠΌ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Π²Π½Π΅ΡΠ½ΠΈΡ
ΠΏΠΎΠ»Π΅ΠΉ, Π²ΡΠΎΡΠΈΡΠ½Ρ. Π‘ΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΈΠ³ΡΠ°ΡΡ Π² ΠΏΡΠΈΡΠΎΠ΄Π΅ ΡΡΠ½Π΄Π°ΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ ΡΠΎΠ»Ρ. ΠΠ½ΠΈ ΠΏΠΎΡΠΎΠΆΠ΄Π°ΡΡ ΡΠΈΠ»Ρ ΠΈΠ½Π΅ΡΡΠΈΠΈ, ΠΎΠ±ΡΠ°Π·ΡΡΡΠΈΠ΅ ΡΠΈΠ»ΠΎΠ²ΡΠ΅ ΠΏΠΎΠ»Ρ, Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΊΠΎΡΠΎΡΡΡ
ΠΌΠ°ΡΠ΅ΡΠΈΡ Π½Π°Π±Π»ΡΠ΄Π°Π΅Ρ Π·Π° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡΠΌΠΈ ΡΠ²ΠΎΠΈΡ
ΡΡΡΡΠΊΡΡΡΠ½ΡΡ
ΡΠΎΡΡΠ°Π²Π»ΡΡΡΠΈΡ
, ΡΠΏΡΠ°Π²Π»ΡΠ΅Ρ ΠΈΠΌΠΈ, ΠΎΡΠ³Π°Π½ΠΈΠ·ΡΡ ΠΈ Π½Π°ΠΏΡΠ°Π²Π»ΡΡ ΠΈΡ
Π½Π° ΡΠΎΠ·Π΄Π°Π½ΠΈΠ΅ Π½ΠΎΠ²ΡΡ
ΡΡΡΡΠΊΡΡΡ. ΠΠΌΠ΅Π½Π½ΠΎ ΡΡΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½Ρ Π·Π° ΡΠ°ΠΌΠΎΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΡ ΠΌΠ°ΡΠ΅ΡΠΈΠΈ, ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΎΠ½ΠΈ ΠΏΠΎΡΠΎΠΆΠ΄Π°ΡΡ ΡΠΎΠ·Π½Π°Π½ΠΈΠ΅ ΠΈ ΠΌΡΡΠ»Π΅Π½ΠΈΠ΅. ΠΠ»Π°Π³ΠΎΠ΄Π°ΡΡ ΠΈΠΌΠ΅Π½Π½ΠΎ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡΠΌ ΠΌΠ°ΡΠ΅ΡΠΈΡ ΠΏΠΎΡΠΎΠΆΠ΄Π°Π΅Ρ Π·Π°ΠΊΠΎΠ½Ρ ΠΏΡΠΈΡΠΎΠ΄Ρ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ°Π· ΠΏΡΠΈΠ²ΠΎΠ΄ΡΡ Π² ΠΈΠ·ΡΠΌΠ»Π΅Π½ΠΈΠ΅ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ°, ΠΎΡΠΊΡΡΠ²Π°ΡΡΠ΅Π³ΠΎ ΠΈΡ
. ΠΡΠ΅Π½ΠΈΠ²Π°Ρ ΠΌΠ΅ΡΡΠΎ, ΠΊΠ°ΠΊΠΎΠ΅ Π·Π°Π½ΠΈΠΌΠ°Π΅Ρ Π² ΠΏΡΠΈΡΠΎΠ΄Π΅ ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΠΈΠ· ΡΠΏΠΎΠΌΡΠ½ΡΡΡΡ
Π²ΡΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ, ΠΌΠΎΠΆΠ½ΠΎ ΡΡΠ²Π΅ΡΠΆΠ΄Π°ΡΡ, ΡΡΠΎ Π²ΡΠ½ΡΠΆΠ΄Π΅Π½Π½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ β ΡΡΠΎ ΠΌΠ΅Π»ΠΊΠ°Ρ ΡΡΠ±Ρ Π½Π° ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ ΠΎΠΊΠ΅Π°Π½Π°, ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΠΎΡΠΎΠΆΠ΄Π°Π΅ΡΡΡ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΠΌΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡΠΌΠΈ ΠΌΠ°ΡΠ΅ΡΠΈΠΈ. ΠΡΠΈΠ·ΠΈΡ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΡΠΈΠ·ΠΈΠΊΠΈ ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½ Π΅Π΅ ΠΏΡΠΈΠ½ΡΠΈΠΏΠΈΠ°Π»ΡΠ½ΠΎΠΉ Π½Π΅ΠΏΠΎΠ»Π½ΠΎΡΠΎΠΉ, Π²ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠΈΠ·ΠΈΠΊΠ° Π·Π°Π½ΠΈΠΌΠ°Π΅ΡΡΡ ΠΈΠ·ΡΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΡΠ±ΠΈ Π½Π° Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ, Π΄Π°ΠΆΠ΅ Π½Π΅ ΠΏΠΎΠ΄ΠΎΠ·ΡΠ΅Π²Π°Ρ, ΡΡΠΎ ΠΏΠΎΠ΄ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΡΡ Π»Π΅ΠΆΠΈΡ ΠΎΠ³ΡΠΎΠΌΠ½ΡΠΉ ΠΌΠΈΡ, ΠΏΠΎΠ»Π½ΡΠΉ ΡΠ°ΠΉΠ½ ΠΈ Π·Π°Π³Π°Π΄ΠΎΠΊ, ΠΊΠΎΡΠΎΡΡΠΉ ΡΠΏΡΠ°Π²Π»ΡΠ΅ΡΡΡ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΠΌΠΈ ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΠΌΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡΠΌΠΈ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ
ΠΡΠΎΠ±Π»Π΅ΠΌΠ° ΠΠΈΡΠ°ΠΊΠ°, ΡΠ°ΡΡΡ 3. ΠΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ ΠΈ ΠΊΡΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ
As is evident from the analysis of the Dirac problem, difficulties of electrodynamics are rooted in the incompleteness of classical mechanics. The elimination of incompleteness of mechanics by including curvilinear motions of classical particles by inertia in the Newtonian scheme of mechanics leads to the need to revise some of the fundamental propositions of theory. As it follows from the condition for stability of accelerated motions of particles by inertia in the transition from one inertial reference frame (IRF) to another, the mass of classical particle is not constant. The mass depends on the particle velocity and changes in passing from one IRF to another. This means that the IRF moving relative to each other are not physically equivalent. The cause of nonequivalence of the IRF is a special physical medium generated by the particle moving by inertia with acceleration. The energy of the medium is distributed differently between rotational and translational degrees of freedom in the IRF moving relative to each other. Nonequivalence of IRF can be registered by experiment. If the system of two particles is in the state of curvilinear motion by inertia, its reduced mass depends on the relative velocity of particles and on the velocity of the center of mass.
There are some additional fields , apart from the fields of inertial forces ( ), that act on particles of two-particle system being in the state of curvilinear motion by inertia. The equations of the field generated by the system of two particles moving with acceleration by inertia are obtained, which are similar to Maxwell's equations for electromagnetic field produced by electrically charged particles. On the basis of this analogy, it is natural to regard the fields and as components of a single electromagnetic field generated by particles moving with acceleration by inertia and to call them the electric and magnetic fields. Classical particles moving along curvilinear paths by inertia generate induced electric and magnetic charges. The induced electric charge is significantly different from the electric charge, which is considered in conventional formulation of electrodynamics as an immutable intrinsic property of classical particle inherent in it by the very nature of things.
A qualitatively new model of atom is built in which the bound state of classical particles is formed not by Coulomb forces but by inertia forces acting on particles in their accelerated motion by inertia. In the model, the splitting of bound state of two particles is due not to the leakage of one of the particles through the Coulomb potential barrier formed by another particle but to the redistribution of energy of the system between its rotational and translational degrees of freedom and can therefore occur without energy loss.
The mechanism of formation of bound state of two particles, caused by the curvilinear motion of parti-cles by inertia, explains the phenomenon of cold nuclear fusion (CNF), which can not be explained within the framework of standard theory because of its incompleteness.
This paper is only a milestone in the research on the Dirac problem. The research, theoretical and exper-imental, is just beginning. It will lead to radical changes in all fields of physical science, giving a powerful impe-tus to the development of our civilization [1].ΠΠ°ΠΊ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ Π°Π½Π°Π»ΠΈΠ· ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ ΠΠΈΡΠ°ΠΊΠ°, ΡΡΡΠ΄Π½ΠΎΡΡΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ ΠΊΠΎΡΠ΅Π½ΡΡΡΡ Π² Π½Π΅ΠΏΠΎΠ»Π½ΠΎΡΠ΅ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠ΅Ρ
Π°Π½ΠΈΠΊΠΈ. Π£ΡΡΡΠ°Π½Π΅Π½ΠΈΠ΅ Π½Π΅ΠΏΠΎΠ»Π½ΠΎΡΡ ΠΌΠ΅Ρ
Π°Π½ΠΈΠΊΠΈ ΠΏΡΡΠ΅ΠΌ Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ Π² ΠΡΡΡΠΎΠ½ΠΎΠ²ΡΠΊΡΡ ΡΡ
Π΅ΠΌΡ ΠΌΠ΅Ρ
Π°Π½ΠΈΠΊΠΈ ΠΊΡΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΡΡ
Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ°ΡΡΠΈΡ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ Π²ΡΠ·ΡΠ²Π°Π΅Ρ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ ΠΏΠ΅ΡΠ΅ΡΠΌΠΎΡΡΠ° Π½Π΅ΠΊΠΎΡΠΎΡΡΡ
ΠΏΡΠΈΠ½ΡΠΈΠΏΠΈΠ°Π»ΡΠ½ΡΡ
ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ ΡΠ΅ΠΎΡΠΈΠΈ. ΠΠ· ΡΡΠ»ΠΎΠ²ΠΈΡ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΡΡΠΈ ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΡ
Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ ΡΠ°ΡΡΠΈΡ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ ΠΏΡΠΈ ΠΏΠ΅ΡΠ΅Ρ
ΠΎΠ΄Π΅ ΠΈΠ· ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ½Π΅ΡΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΡΡΡΠ΅ΡΠ° (ΠΠ‘Π) Π² Π΄ΡΡΠ³ΡΡ ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ ΠΌΠ°ΡΡΠ° ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ°ΡΡΠΈΡΡ Π½Π΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½ΠΎΠΉ. ΠΠ΅Π»ΠΈΡΠΈΠ½Π° ΠΌΠ°ΡΡΡ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ ΡΠΊΠΎΡΠΎΡΡΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ°ΡΡΠΈΡΡ, ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΡ ΠΏΡΠΈ ΠΏΠ΅ΡΠ΅Ρ
ΠΎΠ΄Π΅ ΠΈΠ· ΠΎΠ΄Π½ΠΎΠΉ ΠΠ‘Π Π² Π΄ΡΡΠ³ΡΡ. ΠΡΠΎ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π½Π΅ΡΠ°Π²Π½ΠΎΠΏΡΠ°Π²ΠΈΠ΅ ΠΠ‘Π, Π΄Π²ΠΈΠΆΡΡΠΈΡ
ΡΡ Π΄ΡΡΠ³ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΄ΡΡΠ³Π°. ΠΡΠΈΡΠΈΠ½ΠΎΠΉ Π½Π΅ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΡΡΠΈ ΠΠ‘Π ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΡΠΎΠ±Π°Ρ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΠ΅Π΄Π°, ΠΏΠΎΡΠΎΠΆΠ΄Π°Π΅ΠΌΠ°Ρ ΡΠ°ΡΡΠΈΡΠ΅ΠΉ, Π΄Π²ΠΈΠΆΡΡΠ΅ΠΉΡΡ ΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ. ΠΠ½Π΅ΡΠ³ΠΈΡ ΡΡΠΎΠΉ ΡΡΠ΅Π΄Ρ ΠΏΠΎ-ΡΠ°Π·Π½ΠΎΠΌΡ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΌΠ΅ΠΆΠ΄Ρ Π²ΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌΠΈ ΠΈ ΠΏΠΎΡΡΡΠΏΠ°ΡΠ΅Π»ΡΠ½ΡΠΌΠΈ ΡΡΠ΅ΠΏΠ΅Π½ΡΠΌΠΈ ΡΠ²ΠΎΠ±ΠΎΠ΄Ρ Π² Π΄Π²ΠΈΠΆΡΡΠΈΡ
ΡΡ Π΄ΡΡΠ³ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΄ΡΡΠ³Π° ΠΠ‘Π. ΠΠ΅ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΡΡΡ ΠΠ‘Π ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ Π·Π°ΡΠ΅Π³ΠΈΡΡΡΠΈΡΠΎΠ²Π°Π½Π° Π½Π° ΠΎΠΏΡΡΠ΅. Π‘ΠΈΡΡΠ΅ΠΌΠ° Π΄Π²ΡΡ
ΡΠ°ΡΡΠΈΡ, Π½Π°Ρ
ΠΎΠ΄ΡΡΠ°ΡΡΡ Π² ΡΠΎΡΡΠΎΡΠ½ΠΈΠΈ ΠΊΡΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ, Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΠ΅ΡΡΡ ΡΠ΅ΠΌ, ΡΡΠΎ Π΅Π΅ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½Π°Ρ ΠΌΠ°ΡΡΠ° Π·Π°Π²ΠΈΡΠΈΡ ΠΊΠ°ΠΊ ΠΎΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ°ΡΡΠΈΡ, ΡΠ°ΠΊ ΠΈ ΠΎΡ ΡΠΊΠΎΡΠΎΡΡΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π½ΡΡΠ° ΠΌΠ°ΡΡ. ΠΠ° ΡΠ°ΡΡΠΈΡΡ Π΄Π²ΡΡ
ΡΠ°ΡΡΠΈΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ, ΡΠΎΠ²Π΅ΡΡΠ°ΡΡΠ΅ΠΉ ΠΊΡΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ, Π΄Π΅ΠΉΡΡΠ²ΡΡΡ, ΠΏΠΎΠΌΠΈΠΌΠΎ ΠΏΠΎΠ»Π΅ΠΉ ΡΠΈΠ» ΠΈΠ½Π΅ΡΡΠΈΠΈ Fi, Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΏΠΎΠ»Ρ Hi (i=1,2). ΠΠΎΠ»ΡΡΠ΅Π½Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΠΎΠ»Ρ, ΠΏΠΎΡΠΎΠΆΠ΄Π°Π΅ΠΌΠΎΠ³ΠΎ ΡΠΈΡΡΠ΅ΠΌΠΎΠΉ Π΄Π²ΡΡ
ΡΠ°ΡΡΠΈΡ, Π΄Π²ΠΈΠΆΡΡΠΈΡ
ΡΡ ΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ Π°Π½Π°Π»ΠΎΠ³ΠΈΡΠ½Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΠΌ ΠΠ°ΠΊΡΠ²Π΅Π»Π»Π° Π΄Π»Ρ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ, ΠΏΠΎΡΠΎΠΆΠ΄Π°Π΅ΠΌΠΎΠ³ΠΎ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈ Π·Π°ΡΡΠΆΠ΅Π½Π½ΡΠΌΠΈ ΡΠ°ΡΡΠΈΡΠ°ΠΌΠΈ. ΠΠ° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΡΡΠΎΠΉ Π°Π½Π°Π»ΠΎΠ³ΠΈΠΈ ΠΏΠΎΠ»Ρ Fi ΠΈ Hi Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡ ΠΊΠ°ΠΊ ΡΠΎΡΡΠ°Π²Π»ΡΡΡΠΈΠ΅ Π΅Π΄ΠΈΠ½ΠΎΠ³ΠΎ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ, ΡΠΎΠ·Π΄Π°Π²Π°Π΅ΠΌΠΎΠ³ΠΎ ΡΠ°ΡΡΠΈΡΠ°ΠΌΠΈ, Π΄Π²ΠΈΠΆΡΡΠΈΠΌΠΈΡΡ ΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ, ΠΈ Π½Π°Π·ΡΠ²Π°ΡΡ ΠΈΡ
ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΈ ΠΌΠ°Π³Π½ΠΈΡΠ½ΡΠΌ ΠΏΠΎΠ»ΡΠΌΠΈ. ΠΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ°ΡΡΠΈΡΡ, Π΄Π²ΠΈΠΆΡΡΠΈΠ΅ΡΡ ΠΏΠΎ ΠΊΡΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΠΈ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ, ΠΏΠΎΡΠΎΠΆΠ΄Π°ΡΡ ΠΈΠ½Π΄ΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈ ΠΌΠ°Π³Π½ΠΈΡΠ½ΡΠ΅ Π·Π°ΡΡΠ΄Ρ. ΠΠ½Π΄ΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ Π·Π°ΡΡΠ΄ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΠΎΡΠ»ΠΈΡΠ°Π΅ΡΡΡ ΠΎΡ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π·Π°ΡΡΠ΄Π°, ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌΠΎΠ³ΠΎ Π² ΠΎΠ±ΡΠ΅ΠΏΡΠΈΠ½ΡΡΠΎΠΉ ΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²ΠΊΠ΅ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ ΠΊΠ°ΠΊ Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½ΠΎΠ΅ Π²Π½ΡΡΡΠ΅Π½Π½Π΅Π΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ°ΡΡΠΈΡΡ, ΠΏΡΠΈΡΡΡΠ΅Π΅ Π΅ΠΉ ΠΏΠΎ ΡΠ°ΠΌΠΎΠΉ ΠΏΡΠΈΡΠΎΠ΄Π΅ Π²Π΅ΡΠ΅ΠΉ. ΠΠΎΡΡΡΠΎΠ΅Π½Π° ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ Π½ΠΎΠ²Π°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ Π°ΡΠΎΠΌΠ°, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠ²ΡΠ·Π°Π½Π½ΠΎΠ΅ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ°ΡΡΠΈΡ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°Π΅ΡΡΡ Π½Π΅ ΠΊΡΠ»ΠΎΠ½ΠΎΠ²ΡΠΊΠΈΠΌΠΈ ΡΠΈΠ»Π°ΠΌΠΈ, Π° ΡΠΈΠ»Π°ΠΌΠΈ ΠΈΠ½Π΅ΡΡΠΈΠΈ, Π΄Π΅ΠΉΡΡΠ²ΡΡΡΠΈΠΌΠΈ Π½Π° ΡΠ°ΡΡΠΈΡΡ Π² ΠΈΡ
ΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ. Π ΡΡΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡΠ°ΡΡΠ΅ΠΏΠ»Π΅Π½ΠΈΠ΅ ΡΠ²ΡΠ·Π°Π½Π½ΠΎΠ³ΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ Π΄Π²ΡΡ
ΡΠ°ΡΡΠΈΡ ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΠΈΡ Π½Π΅ Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΠΏΡΠΎΡΠ°ΡΠΈΠ²Π°Π½ΠΈΡ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· ΡΠ°ΡΡΠΈΡ ΡΠΊΠ²ΠΎΠ·Ρ ΠΊΡΠ»ΠΎΠ½ΠΎΠ²ΡΠΊΠΈΠΉ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΠΉ Π±Π°ΡΡΠ΅Ρ, ΠΎΠ±ΡΠ°Π·ΡΠ΅ΠΌΡΠΉ Π΄ΡΡΠ³ΠΎΠΉ ΡΠ°ΡΡΠΈΡΠ΅ΠΉ, Π° ΠΏΡΡΠ΅ΠΌ ΠΏΠ΅ΡΠ΅ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΡΠΈΡΡΠ΅ΠΌΡ ΠΌΠ΅ΠΆΠ΄Ρ Π΅Π΅ Π²ΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌΠΈ ΠΈ ΠΏΠΎΡΡΡΠΏΠ°ΡΠ΅Π»ΡΠ½ΡΠΌΠΈ ΡΡΠ΅ΠΏΠ΅Π½ΡΠΌΠΈ ΡΠ²ΠΎΠ±ΠΎΠ΄Ρ ΠΈ ΠΏΠΎΡΡΠΎΠΌΡ ΠΌΠΎΠΆΠ΅Ρ ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΠΈΡΡ Π±Π΅Π· ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π·Π°ΡΡΠ°Ρ. ΠΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²ΡΠ·Π°Π½Π½ΠΎΠ³ΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ Π΄Π²ΡΡ
ΡΠ°ΡΡΠΈΡ, ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½Π½ΡΠΉ ΠΊΡΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΡΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ ΡΠ°ΡΡΠΈΡ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ, ΠΎΠ±ΡΡΡΠ½ΡΠ΅Ρ ΡΠ²Π»Π΅Π½ΠΈΠ΅ Ρ
ΠΎΠ»ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠΈΠ½ΡΠ΅Π·Π° ΡΠ΄Π΅Ρ (Π₯Π‘Π―), ΠΊΠΎΡΠΎΡΠΎΠ΅ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠ±ΡΡΡΠ½ΠΈΡΡ Π² ΡΠ°ΠΌΠΊΠ°Ρ
ΠΎΠ±ΡΠ΅ΠΏΡΠΈΠ½ΡΡΠΎΠΉ ΡΠ΅ΠΎΡΠΈΠΈ ΠΈΠ·-Π·Π° Π΅Π΅ Π½Π΅ΠΏΠΎΠ»Π½ΠΎΡΡ. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎ ΠΏΡΠΎΠ±Π»Π΅ΠΌΠ΅ ΠΠΈΡΠ°ΠΊΠ°, Π²Π²ΠΈΠ΄Ρ Π΅Π΅ Π°ΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΠΈ, Π½Π΅ ΠΌΠΎΠ³ΡΡ Π·Π°ΠΊΠΎΠ½ΡΠΈΡΡΡΡ Π½Π° Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΠ΅. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ, ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠ΅, ΡΠΎΠ»ΡΠΊΠΎ Π½Π°ΡΠΈΠ½Π°ΡΡΡΡ. ΠΠ½ΠΈ ΠΏΡΠΈΠ²Π΅Π΄ΡΡ ΠΊ ΡΠ°Π΄ΠΈΠΊΠ°Π»ΡΠ½ΡΠΌ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡΠΌ Π²ΠΎ Π²ΡΠ΅Ρ
ΠΎΠ±Π»Π°ΡΡΡΡ
ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π½Π°ΡΠΊΠΈ, Π΄Π°Π² ΠΌΠΎΡΠ½ΡΠΉ ΠΈΠΌΠΏΡΠ»ΡΡ ΡΠ°Π·Π²ΠΈΡΠΈΡ Π½Π°ΡΠ΅ΠΉ ΡΠΈΠ²ΠΈΠ»ΠΈΠ·Π°ΡΠΈΠΈ
ΠΠ±Π»Π°ΡΡΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ ΡΠ΅ΠΎΡΠΈΠΈ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π° ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΎΡΠ΅ΡΠ½ΠΎΠΉ ΡΠ°ΡΡΠΈΡΠ΅ΠΉ. Π Π½Π΅ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΡΡΠΈ ΠΈΠ½Π΅ΡΡΠΈΠ°Π»ΡΠ½ΡΡ ΡΠΈΡΡΠ΅ΠΌ ΠΎΡΡΡΠ΅ΡΠ°
A detailed analysis of the nonequivalence problem of inertial frames of reference (IFR) moving relative to each other in respect to both classical and quantum physical systems is given. The essence of the problem is that the times which enter into the equations of motion in various IFR can differ from those which enter into Lorentz transformations connecting space and time coordinates of the reference frames. The above mentioned distinction disappears only in the case of the most simple physical system β the classical point particle interacting with a force field, and for this reason the field of applicability of the special theory of relativity is reduced to classical one-partial system. It is shown that global time cannot be constructed of the local times which are formed from global time when going over from one reference frame to another. Strict consideration of the nonequivalence problem of IFR is given in the case of quantum particle. The results obtained as to the nonequivalence problem of IFR can be checked in experiments on emission of photons by electronic beam in external electromagnetic field. The relationship between global times in different IFR moving relative to each other in the case of classical point particle is derived. The phenomenon of local dynamic inhomogeneity of time, arising when classical particle moves in a force field, is discussed. It is noted that in relativistic mechanics the force is not only the cause of acceleration of particle relative to IFR, but also the cause of change of the course of time along the particle trajectory. Therein lies the physical content of the dynamic principle underlying relativistic mechanics. According to the received results, within the framework of one-partial approach the Lorentz reduction of length follows from the Lorentz transformations merely under the assumption that classical point particle is capable of moving on trajectory at superluminal speed.ΠΠ°Π½ Π΄Π΅ΡΠ°Π»ΡΠ½ΡΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ Π½Π΅ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΡΡΠΈ Π΄Π²ΠΈΠΆΡΡΠΈΡ
ΡΡ Π΄ΡΡΠ³ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΄ΡΡΠ³Π° ΠΈΠ½Π΅ΡΡΠΈΠ°Π»ΡΠ½ΡΡ
ΡΠΈΡΡΠ΅ΠΌ ΠΎΡΡΡΠ΅ΡΠ° (ΠΠ‘Π) Π² ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ ΠΊΠ°ΠΊ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
, ΡΠ°ΠΊ ΠΈ ΠΊΠ²Π°Π½ΡΠΎΠ²ΡΡ
ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠΈΡΡΠ΅ΠΌ. Π‘ΡΡΡ ΡΡΠΎΠΉ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ ΡΠΎΡΡΠΎΠΈΡ Π² ΡΠΎΠΌ, ΡΡΠΎ Π²ΡΠ΅ΠΌΠ΅Π½Π°, Π²Ρ
ΠΎΠ΄ΡΡΠΈΠ΅ Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π² ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΠ‘Π, ΠΌΠΎΠ³ΡΡ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΠΎΡΠ»ΠΈΡΠ°ΡΡΡΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½, ΠΊΠΎΡΠΎΡΡΠ΅ Π²Ρ
ΠΎΠ΄ΡΡ Π² ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΠΠΎΡΠ΅Π½ΡΠ°, ΡΠ²ΡΠ·ΡΠ²Π°ΡΡΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠΎΠ±ΠΎΠΉ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΠΎ-Π²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΈΡΡΠ΅ΠΌ ΠΎΡΡΡΠ΅ΡΠ°. Π£ΠΊΠ°Π·Π°Π½Π½ΠΎΠ΅ ΡΠ°Π·Π»ΠΈΡΠΈΠ΅ ΠΈΡΡΠ΅Π·Π°Π΅Ρ Π»ΠΈΡΡ Π² ΡΠ»ΡΡΠ°Π΅ ΠΏΡΠΎΡΡΠ΅ΠΉΡΠ΅ΠΉ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ β ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΎΡΠ΅ΡΠ½ΠΎΠΉ ΡΠ°ΡΡΠΈΡΡ, Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΡΡΡΠ΅ΠΉ Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΡΠΌ ΡΠΈΠ»ΠΎΠ²ΡΠΌ ΠΏΠΎΠ»Π΅ΠΌ, ΠΈ ΠΏΠΎ ΡΡΠΎΠΉ ΠΏΡΠΈΡΠΈΠ½Π΅ ΠΎΠ±Π»Π°ΡΡΡ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΠΌΠΎΡΡΠΈ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ΅ΠΎΡΠΈΠΈ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΡΠ²ΠΎΠ΄ΠΈΡΡΡ ΠΊ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΠ΄Π½ΠΎΡΠ°ΡΡΠΈΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠ΅. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΈΠ· Π»ΠΎΠΊΠ°Π»ΡΠ½ΡΡ
Π²ΡΠ΅ΠΌΠ΅Π½, Π² ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΠ΅ΡΠ΅Ρ
ΠΎΠ΄ΠΈΡ Π³Π»ΠΎΠ±Π°Π»ΡΠ½ΠΎΠ΅ Π²ΡΠ΅ΠΌΡ ΠΏΡΠΈ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡΡ
ΠΠΎΡΠ΅Π½ΡΠ°, Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΡΠΊΠΎΠ½ΡΡΡΡΠΈΡΠΎΠ²Π°ΡΡ Π³Π»ΠΎΠ±Π°Π»ΡΠ½ΠΎΠ΅ Π²ΡΠ΅ΠΌΡ Π² ΡΠΎΠΉ ΠΠ‘Π, Π² ΠΊΠΎΡΠΎΡΡΡ ΡΠΎΠ²Π΅ΡΡΠ°Π΅ΡΡΡ ΠΏΠ΅ΡΠ΅Ρ
ΠΎΠ΄. ΠΠ°Π½ΠΎ ΡΡΡΠΎΠ³ΠΎΠ΅ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ Π½Π΅ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΡΡΠΈ ΠΠ‘Π Π² ΡΠ»ΡΡΠ°Π΅ ΠΊΠ²Π°Π½ΡΠΎΠ²ΠΎΠΉ ΡΠ°ΡΡΠΈΡΡ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π²ΡΠ²ΠΎΠ΄Ρ ΡΠ΅ΠΎΡΠΈΠΈ Π² ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ Π½Π΅ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΡΡΠΈ ΠΠ‘Π ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΎΠ²Π΅ΡΠΈΡΡ ΠΎΠΏΡΡΠ½ΡΠΌ ΠΏΡΡΠ΅ΠΌ Π² ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Ρ
ΠΏΠΎ ΠΈΡΠΏΡΡΠΊΠ°Π½ΠΈΡ ΡΠΎΡΠΎΠ½ΠΎΠ² ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΡΠΌ ΠΏΡΡΠΊΠΎΠΌ Π²ΠΎ Π²Π½Π΅ΡΠ½Π΅ΠΌ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠΌ ΠΏΠΎΠ»Π΅. Π Π°ΡΡΠΌΠΎΡΡΠ΅Π½Π° ΡΠ²ΡΠ·Ρ ΠΌΠ΅ΠΆΠ΄Ρ Π³Π»ΠΎΠ±Π°Π»ΡΠ½ΡΠΌΠΈ Π²ΡΠ΅ΠΌΠ΅Π½Π°ΠΌΠΈ Π² Π΄Π²ΠΈΠΆΡΡΠΈΡ
ΡΡ Π΄ΡΡΠ³ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΄ΡΡΠ³Π° ΠΠ‘Π Π² ΡΠ»ΡΡΠ°Π΅ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΎΡΠ΅ΡΠ½ΠΎΠΉ ΡΠ°ΡΡΠΈΡΡ. ΠΠ±ΡΡΠΆΠ΄Π°Π΅ΡΡΡ ΡΠ²Π»Π΅Π½ΠΈΠ΅ Π»ΠΎΠΊΠ°Π»ΡΠ½ΠΎΠΉ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ Π½Π΅ΠΎΠ΄Π½ΠΎΡΠΎΠ΄Π½ΠΎΡΡΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡΡΠ΅Π΅ ΠΏΡΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ°ΡΡΠΈΡΡ Π² ΡΠΈΠ»ΠΎΠ²ΠΎΠΌ ΠΏΠΎΠ»Π΅. ΠΡΠΌΠ΅ΡΠ°Π΅ΡΡΡ, ΡΡΠΎ Π² ΡΠ΅Π»ΡΡΠΈΠ²ΠΈΡΡΡΠΊΠΎΠΉ ΠΌΠ΅Ρ
Π°Π½ΠΈΠΊΠ΅ ΡΠΈΠ»Π° ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠΈΡΠΈΠ½ΠΎΠΉ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΡΠ°ΡΡΠΈΡΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΠ‘Π, Π½ΠΎ ΠΈ ΠΏΡΠΈΡΠΈΠ½ΠΎΠΉ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ Ρ
ΠΎΠ΄Π° Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π²Π΄ΠΎΠ»Ρ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ°ΡΡΠΈΡΡ, β Π² ΡΡΠΎΠΌ ΡΠΎΡΡΠΎΠΈΡ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΈΠ½ΡΠΈΠΏΠ°, Π»Π΅ΠΆΠ°ΡΠ΅Π³ΠΎ Π² ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠ΅Π»ΡΡΠΈΠ²ΠΈΡΡΡΠΊΠΎΠΉ ΠΌΠ΅Ρ
Π°Π½ΠΈΠΊΠΈ. Π‘ΠΎΠ³Π»Π°ΡΠ½ΠΎ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠΌ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌ, Π² ΡΠ°ΠΌΠΊΠ°Ρ
ΠΎΠ΄Π½ΠΎΡΠ°ΡΡΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π° Π»ΠΎΡΠ΅Π½ΡΠ΅Π²ΠΎ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ ΠΎΡΡΠ΅Π·ΠΊΠ° ΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΈΠ· ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΠΠΎΡΠ΅Π½ΡΠ° Π»ΠΈΡΡ Π² ΠΏΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ, ΡΡΠΎ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠΎΡΠ΅ΡΠ½Π°Ρ ΡΠ°ΡΡΠΈΡΠ° ΡΠΏΠΎΡΠΎΠ±Π½Π° Π΄Π²ΠΈΠ³Π°ΡΡΡΡ ΠΏΠΎ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΠΈ ΡΠΎ ΡΠ²Π΅ΡΡ
ΡΠ²Π΅ΡΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ