24 research outputs found

### Π ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠΈΡΠΎΠ΄Π΅ Π³ΡΠ°Π²ΠΈΡΠ°ΡΠΈΠΈ

According to the results of our previous research, the accelerated motions of particles by inertia give rise to the attractive force between particles. In this article the usual free-fall laws of a small trial body on surface of the large one are inferred from the accelerated inertial motions concept. Thus, the simple physical explanation for gravitation phenomenon is found, without using the hypothesis that a special force field exists as a property intrinsically inherent to substance particles, and also without using the concept of gravitational mass and the principle of equivalence of inertial and gravitational masses. The results obtained allow one to conclude that the physical nature of gravitation is uncovered: the reason of gravitation is the accelerated motions of particles by inertia. The foundation is laid for the theory of gravitation as a physical one. The Newtonian theory of gravitation is an approximate, phenomenological theory, which is valid only on certain conditions. The physical meaning of gravitation constant Ξ³ is elucidated. The numerical estimate of the magnitude of Ξ³ made with the formula obtained in the paper is in good agreement with observational data. According to the results of observations performed at different years, the value of Ξ³ varies with time. This is due to the fact that Ξ³ is not a fundamental constant, but a quantity that depends on parameters which define the celestial bodies motion and undergo small fluctuations in the course of time. An arbitrary motion of classical particle is a linear combination of two motions: the accelerated motion by inertia Dinertial, taking place without any expenditures of energy, and the forced motion Dforced, taking place under the influence of an external force. Superposition of the forces, generated by accelerated motions by inertia in multiparticle systems, leads to appearance of a special force field which plays the role of a physical medium inseparable from paticles. The knowledge of the mechanism of formation of the medium allows one to describe its physical properties and to explore its behaviour and interaction with the particles generating it. Out of the non-enumerable set of motions being described by linear combination of motions Dinertial and Dforced, a single motion Dforced is taken into account in Newtonian mechanics. Thus, the continuum of motions drops out of the field of view of mechanics - such is the degree of incompleteness of the Newtonian scheme of mechanics as the research technique of nature. The type of the equation of motion describing the perturbation of physical system, being in a state of accelerated motion by inertia, under the action of external force is established. It is shown that various co-ordinate systems as the analysers of motion are physically noncompletely equivalent in respect to the accelerated motions by inertia. It is due to the fact that the physical content of the concept of degree of freedom of particle appears to be different in various co-ordinate systems.Π‘ΠΎΠ³Π»Π°ΡΠ½ΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ, Π²ΡΠΏΠΎΠ»Π½Π΅Π½Π½ΡΡ Π² Π½Π°ΡΠΈΡ ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠΈΡ ΡΠ°Π±ΠΎΡΠ°Ρ, ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ°ΡΡΠΈΡ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ ΠΏΡΠΈΠ²ΠΎΠ΄ΡΡ ΠΊ ΠΏΠΎΡΠ²Π»Π΅Π½ΠΈΡ ΡΠΈΠ»Ρ ΠΏΡΠΈΡΡΠΆΠ΅Π½ΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ°ΡΡΠΈΡΠ°ΠΌΠΈ. Π Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΠ΅ ΠΈΠ· ΠΊΠΎΠ½ΡΠ΅ΠΏΡΠΈΠΈ ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ Π²ΡΠ²Π΅Π΄Π΅Π½Ρ ΠΎΠ±ΡΡΠ½ΡΠ΅ Π·Π°ΠΊΠΎΠ½Ρ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠ°Π΄Π΅Π½ΠΈΡ Π½Π΅Π±ΠΎΠ»ΡΡΠΎΠ³ΠΎ ΠΏΡΠΎΠ±Π½ΠΎΠ³ΠΎ ΡΠ΅Π»Π° Π½Π° ΠΏΠΎΠ²Π΅ΡΡΠ½ΠΎΡΡΡ ΠΌΠ°ΡΡΠΈΠ²Π½ΠΎΠ³ΠΎ. ΠΠ°ΠΉΠ΄Π΅Π½ΠΎ, ΡΠ°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΏΡΠΎΡΡΠΎΠ΅ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΠ±ΡΡΡΠ½Π΅Π½ΠΈΠ΅ ΡΠ²Π»Π΅Π½ΠΈΡ Π³ΡΠ°Π²ΠΈΡΠ°ΡΠΈΠΈ, Π½Π΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΠ΅Π΅ Π³ΠΈΠΏΠΎΡΠ΅Π·Ρ ΠΎ ΡΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΠΈ ΠΎΡΠΎΠ±ΠΎΠ³ΠΎ ΡΠΈΠ»ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ ΠΊΠ°ΠΊ ΡΠ²ΠΎΠΉΡΡΠ²Π°, Π²Π½ΡΡΡΠ΅Π½Π½Π΅ ΠΏΡΠΈΡΡΡΠ΅Π³ΠΎ ΡΠ°ΡΡΠΈΡΠ°ΠΌ Π²Π΅ΡΠ΅ΡΡΠ²Π°, Π° ΡΠ°ΠΊΠΆΠ΅ Π½Π΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΠ΅Π΅ ΠΏΠΎΠ½ΡΡΠΈΠ΅ Π³ΡΠ°Π²ΠΈΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΠΌΠ°ΡΡΡ ΠΈ ΠΏΡΠΈΠ½ΡΠΈΠΏ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΡΡΠΈ ΠΈΠ½Π΅ΡΡΠ½ΠΎΠΉ ΠΈ Π³ΡΠ°Π²ΠΈΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΠΌΠ°ΡΡ. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ Π·Π°ΠΊΠ»ΡΡΠΈΡΡ, ΡΡΠΎ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΏΡΠΈΡΠΎΠ΄Π° Π³ΡΠ°Π²ΠΈΡΠ°ΡΠΈΠΈ ΡΠ°ΡΠΊΡΡΡΠ°: ΠΏΡΠΈΡΠΈΠ½ΠΎΠΉ Π³ΡΠ°Π²ΠΈΡΠ°ΡΠΈΠΈ ΡΠ²Π»ΡΡΡΡΡ ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ°ΡΡΠΈΡ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ. ΠΠ°Π»ΠΎΠΆΠ΅Π½ ΡΡΠ½Π΄Π°ΠΌΠ΅Π½Ρ ΡΠ΅ΠΎΡΠΈΠΈ ΡΡΠ³ΠΎΡΠ΅Π½ΠΈΡ ΠΊΠ°ΠΊ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΎΡΠΈΠΈ. ΠΡΡΡΠΎΠ½ΠΎΠ²ΡΠΊΠ°Ρ ΡΠ΅ΠΎΡΠΈΡ Π³ΡΠ°Π²ΠΈΡΠ°ΡΠΈΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½ΠΎΠΉ, ΡΠ΅Π½ΠΎΠΌΠ΅Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΎΡΠΈΠ΅ΠΉ, ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ²ΠΎΠΉ Π»ΠΈΡΡ ΠΏΡΠΈ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΡ ΡΡΠ»ΠΎΠ²ΠΈΠΉ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» Π³ΡΠ°Π²ΠΈΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ Ξ³. Π§ΠΈΡΠ»Π΅Π½Π½Π°Ρ ΠΎΡΠ΅Π½ΠΊΠ° Π²Π΅Π»ΠΈΡΠΈΠ½Ρ c ΠΏΠΎ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠΉ Π² ΡΠ°Π±ΠΎΡΠ΅ ΡΠΎΡΠΌΡΠ»Π΅ ΡΠΎΡΠΎΡΠΎ ΡΠΎΠ³Π»Π°ΡΡΠ΅ΡΡΡ Ρ Π΄Π°Π½Π½ΡΠΌΠΈ Π½Π°Π±Π»ΡΠ΄Π΅Π½ΠΈΠΉ. Π‘ΠΎΠ³Π»Π°ΡΠ½ΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌ Π½Π°Π±Π»ΡΠ΄Π΅Π½ΠΈΠΉ, ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΡΡ Π² ΡΠ°Π·Π½ΡΠ΅ Π³ΠΎΠ΄Ρ, Π²Π΅Π»ΠΈΡΠΈΠ½Π° Ξ³ ΡΠΎ Π²ΡΠ΅ΠΌΠ΅Π½Π΅ΠΌ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ. Π­ΡΠΎ ΠΎΠ±ΡΡΡΠ½ΡΠ΅ΡΡΡ ΡΠ΅ΠΌ, ΡΡΠΎ Ξ³ - Π½Π΅ ΡΡΠ½Π΄Π°ΠΌΠ΅Π½ΡΠ°Π»ΡΠ½Π°Ρ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΠ°, Π° Π²Π΅Π»ΠΈΡΠΈΠ½Π°, Π·Π°Π²ΠΈΡΡΡΠ°Ρ ΠΎΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π½Π΅Π±Π΅ΡΠ½ΡΡ ΡΠ΅Π», ΠΊΠΎΡΠΎΡΡΠ΅ Ρ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΈΡΠΏΡΡΡΠ²Π°ΡΡ Π½Π΅Π±ΠΎΠ»ΡΡΠΈΠ΅ ΡΠ»ΡΠΊΡΡΠ°ΡΠΈΠΈ. ΠΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ°ΡΡΠΈΡΡ ΡΠ²Π»ΡΠ΅ΡΡΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΠ΅ΠΉ Π΄Π²ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ: ΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ DΠΈΠ½Π΅ΡΡ, ΠΏΡΠΎΠΈΡΡΠΎΠ΄ΡΡΠ΅Π³ΠΎ Π±Π΅Π· ΠΊΠ°ΠΊΠΈΡ-Π»ΠΈΠ±ΠΎ Π·Π°ΡΡΠ°Ρ ΡΠ½Π΅ΡΠ³ΠΈΠΈ, ΠΈ Π²ΡΠ½ΡΠΆΠ΄Π΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ DΠ²ΡΠ½ΡΠΆΠ΄, ΠΏΡΠΎΠΈΡΡΠΎΠ΄ΡΡΠ΅Π³ΠΎ ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ Π²Π½Π΅ΡΠ½Π΅ΠΉ ΡΠΈΠ»Ρ. Π‘ΡΠΏΠ΅ΡΠΏΠΎΠ·ΠΈΡΠΈΡ ΡΠΈΠ», ΠΏΠΎΡΠΎΠΆΠ΄Π°Π΅ΠΌΡΡ Π² ΠΌΠ½ΠΎΠ³ΠΎΡΠ°ΡΡΠΈΡΠ½ΡΡ ΡΠΈΡΡΠ΅ΠΌΠ°Ρ ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΠΌΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡΠΌΠΈ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ, ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΠΏΠΎΡΠ²Π»Π΅Π½ΠΈΡ ΠΎΡΠΎΠ±ΠΎΠ³ΠΎ ΡΠΈΠ»ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΈΠ³ΡΠ°Π΅Ρ ΡΠΎΠ»Ρ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ΅Π΄Ρ, Π½Π΅ΠΎΡΠ΄Π΅Π»ΠΈΠΌΠΎΠΉ ΠΎΡ ΡΠ°ΡΡΠΈΡ. ΠΠ½Π°Π½ΠΈΠ΅ ΠΌΠ΅ΡΠ°Π½ΠΈΠ·ΠΌΠ° ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠΉ ΡΡΠ΅Π΄Ρ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΎΠΏΠΈΡΠ°ΡΡ Π΅Π΅ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΡ Π΅Π΅ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΈ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ Ρ ΠΏΠΎΡΠΎΠΆΠ΄Π°ΡΡΠΈΠΌΠΈ Π΅Π΅ ΡΠ°ΡΡΠΈΡΠ°ΠΌΠΈ. ΠΠ· Π½Π΅ΡΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ, ΠΎΠΏΠΈΡΡΠ²Π°Π΅ΠΌΡΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΠ΅ΠΉ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ DΠΈΠ½Π΅ΡΡ ΠΈ DΠ²ΡΠ½ΡΠΆΠ΄, Π² ΠΌΠ΅ΡΠ°Π½ΠΈΠΊΠ΅ ΠΡΡΡΠΎΠ½Π° ΡΡΠΈΡΡΠ²Π°Π΅ΡΡΡ Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ - DΠ²ΡΠ½ΡΠΆΠ΄. ΠΠ½Π΅ ΠΏΠΎΠ»Ρ Π·ΡΠ΅Π½ΠΈΡ ΠΌΠ΅ΡΠ°Π½ΠΈΠΊΠΈ Π»Π΅ΠΆΠΈΡ, ΡΠ°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΊΠΎΠ½ΡΠΈΠ½ΡΡΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ - ΡΠ°ΠΊΠΎΠ²Π° ΡΡΠ΅ΠΏΠ΅Π½Ρ Π½Π΅ΠΏΠΎΠ»Π½ΠΎΡΡ Π½ΡΡΡΠΎΠ½ΠΎΠ²ΡΠΊΠΎΠΉ ΡΡΠ΅ΠΌΡ ΠΌΠ΅ΡΠ°Π½ΠΈΠΊΠΈ ΠΊΠ°ΠΊ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠΈΡΠΎΠ΄Ρ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ Π²ΠΈΠ΄ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, ΠΎΠΏΠΈΡΡΠ²Π°ΡΡΠ΅Π³ΠΎ Π²ΠΎΠ·ΠΌΡΡΠ΅Π½ΠΈΠ΅ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ, Π½Π°ΡΠΎΠ΄ΡΡΠ΅ΠΉΡΡ Π² ΡΠΎΡΡΠΎΡΠ½ΠΈΠΈ ΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ, ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ Π²Π½Π΅ΡΠ½Π΅ΠΉ ΡΠΈΠ»Ρ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ ΡΠΈΡΡΠ΅ΠΌΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΠΊΠ°ΠΊ Π°Π½Π°Π»ΠΈΠ·Π°ΡΠΎΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π½Π΅ Π²ΠΏΠΎΠ»Π½Π΅ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½Ρ Π² ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ. Π­ΡΠΎ ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½ΠΎ ΡΠ΅ΠΌ, ΡΡΠΎ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΠΏΠΎΠ½ΡΡΠΈΡ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΡΠ²ΠΎΠ±ΠΎΠ΄Ρ ΡΠ°ΡΡΠΈΡΡ ΠΎΠΊΠ°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌ Π² ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΡΡ ΡΠΈΡΡΠ΅ΠΌΠ°Ρ

### Π‘Π²Π΅ΡΡΡΠ²Π΅ΡΠΎΠ²ΡΠ΅ ΡΠΈΠ³Π½Π°Π»Ρ, ΠΏΡΠΈΡΠΈΠ½Π½ΠΎ-ΡΠ»Π΅Π΄ΡΡΠ²Π΅Π½Π½Π°Ρ ΡΠ²ΡΠ·Ρ ΠΈ ΡΠ²Π»Π΅Π½ΠΈΠ΅ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ²

Till now in the literature there was no consistent analysis, based on dynamic model of the causal relation between events caused by superluminal signals. The purpose of the paper is to remove this gap in our knowledge, which contributed to the preservation of prejudices regarding superluminal signals. With a simple dynamic model, describing the cause-consequence relation between two events, it is shown that in case of superluminal signals there are no problems with causality principle. The arguments against the existence of superluminal signals, available in the literature, are erroneous because they are based on the identification of different quantities β global time and local time. The physical essence of the relativity phenomenon of physical processes is explained and its universal character is noted. The physical contents of relativity principle is specified. The results of the paper, together with results of previous researches, allow one to assert that the sources and reasons of the error regarding superluminal signals are now understood, the mechanisms of its preservation for a long time in consciousness of people are elucidated, and the true role of superluminal signals in nature is revealed. Thereby the obstacles to the investigations in the field of superluminal communication are removed and the inviting prospects of creating the qualitatively new communication systems are opened.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ, Π·Π°Π²Π΅ΡΡΠ°ΡΡΠ΅ΠΉ ΡΠΈΠΊΠ» Π½Π°ΡΠΈΡ ΠΌΠ½ΠΎΠ³ΠΎΠ»Π΅ΡΠ½ΠΈΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΠΏΠΎ ΡΠ²Π΅ΡΡΡΠ²Π΅ΡΠΎΠ²ΡΠΌ ΡΠΈΠ³Π½Π°Π»Π°ΠΌ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ ΡΠ΄Π΅Π»Π°ΡΡ Π²ΡΠ²ΠΎΠ΄, ΡΡΠΎ ΡΠΎΡΡΠ°Π½ΡΠ²ΡΠΈΠΉΡΡ ΠΏΠΎΡΡΠΈ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π²Π΅ΠΊΠ° ΠΏΡΠ΅Π΄ΡΠ°ΡΡΡΠ΄ΠΎΠΊ Π² ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ ΡΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²Π΅ΡΠΎΠ²ΠΎΠ³ΠΎ Π±Π°ΡΡΠ΅ΡΠ° ΠΎΠΊΠΎΠ½ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎ ΠΏΡΠ΅ΠΎΠ΄ΠΎΠ»Π΅Π½. ΠΠΎΠ½ΡΡΡ ΠΈΡΡΠΎΠΊΠΈ ΠΈ ΠΏΡΠΈΡΠΈΠ½Ρ Π·Π°Π±Π»ΡΠΆΠ΄Π΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠ²Π΅ΡΡΡΠ²Π΅ΡΠΎΠ²ΡΡ ΡΠΈΠ³Π½Π°Π»ΠΎΠ², Π²ΡΠΊΡΡΡΡ ΠΌΠ΅ΡΠ°Π½ΠΈΠ·ΠΌΡ, ΡΠΏΠΎΡΠΎΠ±ΡΡΠ²ΠΎΠ²Π°Π²ΡΠΈΠ΅ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΌΡ ΡΠΎΡΡΠ°Π½Π΅Π½ΠΈΡ Π΅Π³ΠΎ Π² ΡΠΎΠ·Π½Π°Π½ΠΈΠΈ Π»ΡΠ΄Π΅ΠΉ, ΠΈ ΠΎΡΠΎΠ·Π½Π°Π½Π° ΠΈΡΡΠΈΠ½Π½Π°Ρ ΡΠΎΠ»Ρ ΡΠ²Π΅ΡΡΡΠ²Π΅ΡΠΎΠ²ΡΡ ΡΠΈΠ³Π½Π°Π»ΠΎΠ² Π² ΠΏΡΠΈΡΠΎΠ΄Π΅. Π’Π΅ΠΌ ΡΠ°ΠΌΡΠΌ ΡΡΡΡΠ°Π½ΡΡΡΡΡ ΠΏΡΠ΅ΠΏΡΡΡΡΠ²ΠΈΡ Π½Π° ΠΏΡΡΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΡΠ²Π΅ΡΡΡΠ²Π΅ΡΠΎΠ²ΠΎΠΉ ΠΊΠΎΠΌΠΌΡΠ½ΠΈΠΊΠ°ΡΠΈΠΈ ΠΈ ΠΎΡΠΊΡΡΠ²Π°ΡΡΡΡ ΡΠΈΡΠΎΠΊΠΈΠ΅ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Ρ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ Π½ΠΎΠ²ΡΡ ΡΡΠ΅Π΄ΡΡΠ² ΠΈ ΡΠΈΡΡΠ΅ΠΌ ΠΊΠΎΠΌΠΌΡΠ½ΠΈΠΊΠ°ΡΠΈΠΈ. ΠΠΎ ΡΠΈΡ ΠΏΠΎΡ Π² Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ΅ ΠΎΡΡΡΡΡΡΠ²ΠΎΠ²Π°Π» ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΠΉ, ΠΎΡΠ½ΠΎΠ²Π°Π½Π½ΡΠΉ Π½Π° Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ, Π°Π½Π°Π»ΠΈΠ· ΠΏΡΠΈΡΠΈΠ½Π½ΠΎΠΉ ΡΠ²ΡΠ·ΠΈ, ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½Π½ΠΎΠΉ ΡΠ²Π΅ΡΡΡΠ²Π΅ΡΠΎΠ²ΡΠΌΠΈ ΡΠΈΠ³Π½Π°Π»Π°ΠΌΠΈ. Π¦Π΅Π»Ρ Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ β ΡΡΡΡΠ°Π½ΠΈΡΡ ΡΡΠΎΡ ΠΏΡΠΎΠ±Π΅Π» Π² Π½Π°ΡΠΈΡ Π·Π½Π°Π½ΠΈΡΡ. ΠΠ° ΠΏΡΠΎΡΡΠΎΠΉ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΏΡΠΈΡΠΈΠ½Π½ΠΎ-ΡΠ»Π΅Π΄ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΡΠ²ΡΠ·ΠΈ ΠΌΠ΅ΠΆΠ΄Ρ Π΄Π²ΡΠΌΡ ΡΠΎΠ±ΡΡΠΈΡΠΌΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π² ΡΠ»ΡΡΠ°Π΅ ΡΠ²Π΅ΡΡΡΠ²Π΅ΡΠΎΠ²ΡΡ ΡΠΈΠ³Π½Π°Π»ΠΎΠ² Π½Π΅ Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ ΠΊΠ°ΠΊΠΈΡ-Π»ΠΈΠ±ΠΎ Π·Π°ΡΡΡΠ΄Π½Π΅Π½ΠΈΠΉ Ρ ΠΏΡΠΈΠ½ΡΠΈΠΏΠΎΠΌ ΠΏΡΠΈΡΠΈΠ½Π½ΠΎΡΡΠΈ. ΠΠΌΠ΅ΡΡΠΈΠ΅ΡΡ Π² Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ΅ Π΄ΠΎΠ²ΠΎΠ΄Ρ ΠΏΡΠΎΡΠΈΠ² ΡΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²Π΅ΡΡΡΠ²Π΅ΡΠΎΠ²ΡΡ ΡΠΈΠ³Π½Π°Π»ΠΎΠ² ΠΎΡΠΈΠ±ΠΎΡΠ½Ρ ΠΏΠΎ ΡΠΎΠΉ ΠΏΡΠΈΡΠΈΠ½Π΅, ΡΡΠΎ ΠΎΠ½ΠΈ ΠΎΡΠ½ΠΎΠ²Π°Π½Ρ Π½Π° ΠΎΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π»Π΅Π½ΠΈΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½ β Π³Π»ΠΎΠ±Π°Π»ΡΠ½ΠΎΠ³ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Π²ΡΠΎΠ΄ΡΡΠ΅Π³ΠΎ Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, ΠΈ Π»ΠΎΠΊΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Π²ΡΠΎΠ΄ΡΡΠ΅Π³ΠΎ Π² ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΠΠΎΡΠ΅Π½ΡΠ°. Π Π°Π·ΡΡΡΠ½ΡΠ΅ΡΡΡ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΡΠ½ΠΎΡΡΡ ΡΠ²Π»Π΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² ΠΈ ΠΎΡΠΌΠ΅ΡΠ°Π΅ΡΡΡ Π΅Π³ΠΎ ΡΠ½ΠΈΠ²Π΅ΡΡΠ°Π»ΡΠ½ΡΠΉ ΡΠ°ΡΠ°ΠΊΡΠ΅Ρ. Π£ΡΠΎΡΠ½ΡΠ΅ΡΡΡ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΠΏΡΠΈΠ½ΡΠΈΠΏΠ° ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ

### ΠΠΎΠ²ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ Π² ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΡΡΡΠ½ΠΎΡΡΠΈ ΠΏΡΠΈΠ½ΡΠΈΠΏΠ° ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ

The evidence for the physical nonequivalence of inertial reference frames moving relative to each other is given. The content of relativity principle is shown to be narrower than it is accepted nowadays. The principle of relativity is kept as the requirement of relativistic invariance of the laws of nature, the requirement, which results from the relativistic invariance of Maxwell equations for electromagnetic field. However, according to the results of the paper, the physical equivalence of inertial reference frames moving relative to each other does not follow from the relativistic invariance of equations of motion. This is due to the fact that the character of physical processes in inertial reference frames is not defined completely by equations of motion. To define phenomena and processes uniquely, the initial conditions should be used and formulated in terms of the time independence of spatial coordinates (global time). The transition of the global time of one inertial reference frame to the local times of the other frame, related to each other by Lorentz transformations, results in the physical nonequivalence of inertial reference frames. The above mentioned nonequivalence is a consequence of incompatibility of Lorentz transformations with dynamic principle: these transformations knock solutions of the dynamic equations out of the class of solutions with global time transferring them to solutions with local time. One manifestation of nonequivalence of inertial reference frames is the effect of physical processes relativity predicted by us in 1978. As the examples, illustrating basic conclusions of the paper, we consider elementary physical systems β the set of classical point particles, a free electron field and a quantum system in an external field causing quantum transitions. Under Lorentz transformations, the global time is shown to be split into some number of local times. Though, formally, the relativistic invariance of equations of motion is kept, the local time dependence on the velocity of relative motion of reference frames testifies that each inertial reference frame proves to be singled out among the others. The received results can serve as a strict substantiation of our previous conclusions concerning light barrier and superluminal communication, and open the way to the construction of the consecutive theory of physical processes occurring in inertial frames moving relative to an observer (for example, on stars).ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΈΠ½Π΅ΡΡΠΈΠ°Π»ΡΠ½ΡΠ΅ ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΡΡΡΠ΅ΡΠ°, Π΄Π²ΠΈΠΆΡΡΠΈΠ΅ΡΡ Π΄ΡΡΠ³ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΄ΡΡΠ³Π°, Π½Π΅ ΡΠ²Π»ΡΡΡΡΡ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΠΌΠΈ. Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΠΏΡΠΈΠ½ΡΠΈΠΏΠ° ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΎΠΊΠ°Π·ΡΠ²Π°Π΅ΡΡΡ Π±ΠΎΠ»Π΅Π΅ ΡΠ·ΠΊΠΈΠΌ, ΡΠ΅ΠΌ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅ΡΡΡ Π½ΡΠ½Π΅. ΠΡΠΈΠ½ΡΠΈΠΏ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΡΠΎΡΡΠ°Π½ΡΠ΅ΡΡΡ ΠΊΠ°ΠΊ ΡΡΠ΅Π±ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ΅Π»ΡΡΠΈΠ²ΠΈΡΡΡΠΊΠΎΠΉ ΠΈΠ½Π²Π°ΡΠΈΠ°Π½ΡΠ½ΠΎΡΡΠΈ Π·Π°ΠΊΠΎΠ½ΠΎΠ² ΠΏΡΠΈΡΠΎΠ΄Ρ, Π½Π° Π½Π΅ΠΎΠ±ΡΠΎΠ΄ΠΈΠΌΠΎΡΡΡ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΡΠΊΠ°Π·ΡΠ²Π°Π΅Ρ ΡΠ΅Π»ΡΡΠΈΠ²ΠΈΡΡΡΠΊΠ°Ρ ΠΈΠ½Π²Π°ΡΠΈΠ°Π½ΡΠ½ΠΎΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΠ°ΠΊΡΠ²Π΅Π»Π»Π°. ΠΠ΄Π½Π°ΠΊΠΎ ΠΈΠ· ΡΠ΅Π»ΡΡΠΈΠ²ΠΈΡΡΡΠΊΠΎΠΉ ΠΈΠ½Π²Π°ΡΠΈΠ°Π½ΡΠ½ΠΎΡΡΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π½Π΅ ΡΠ»Π΅Π΄ΡΠ΅Ρ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΡΡΡ ΠΈΠ½Π΅ΡΡΠΈΠ°Π»ΡΠ½ΡΡ ΡΠΈΡΡΠ΅ΠΌ ΠΎΡΡΡΠ΅ΡΠ°, Π΄Π²ΠΈΠΆΡΡΠΈΡΡΡ Π΄ΡΡΠ³ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΄ΡΡΠ³Π°. Π­ΡΠΎ ΡΠ²ΡΠ·Π°Π½ΠΎ Ρ ΡΠ΅ΠΌ, ΡΡΠΎ ΡΠ°ΡΠ°ΠΊΡΠ΅Ρ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² Π² ΠΈΠ½Π΅ΡΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΎΡΡΡΠ΅ΡΠ° Π½Π΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΏΠΎΠ»Π½ΠΎΡΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΠΌΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ. ΠΠ»Ρ ΠΎΠ΄Π½ΠΎΠ·Π½Π°ΡΠ½ΠΎΠ³ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠ²Π»Π΅Π½ΠΈΠΉ ΠΈ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² Π½Π΅ΠΎΠ±ΡΠΎΠ΄ΠΈΠΌΡ Π½Π°ΡΠ°Π»ΡΠ½ΡΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠΎΡΠΌΡΠ»ΠΈΡΡΡΡΡΡ Π½Π° ΡΠ·ΡΠΊΠ΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Π½Π΅ Π·Π°Π²ΠΈΡΡΡΠ΅Π³ΠΎ ΠΎΡ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ (Π³Π»ΠΎΠ±Π°Π»ΡΠ½ΠΎΠ³ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ). ΠΡΠΈ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡΡ ΠΠΎΡΠ΅Π½ΡΠ° Π³Π»ΠΎΠ±Π°Π»ΡΠ½ΠΎΠ΅ Π²ΡΠ΅ΠΌΡ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ½Π΅ΡΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΡΡΡΠ΅ΡΠ° ΠΏΠ΅ΡΠ΅ΡΠΎΠ΄ΠΈΡ Π² Π»ΠΎΠΊΠ°Π»ΡΠ½ΡΠ΅ Π²ΡΠ΅ΠΌΠ΅Π½Π° Π΄ΡΡΠ³ΠΎΠΉ. Π­ΡΠΎ ΠΎΠ±ΡΡΠΎΡΡΠ΅Π»ΡΡΡΠ²ΠΎ ΠΈ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π½Π΅ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΡΡΠΈ ΠΈΠ½Π΅ΡΡΠΈΠ°Π»ΡΠ½ΡΡ ΡΠΈΡΡΠ΅ΠΌ ΠΎΡΡΡΠ΅ΡΠ°. ΠΠ΄Π½ΠΈΠΌ ΠΈΠ· ΠΏΡΠΎΡΠ²Π»Π΅Π½ΠΈΠΉ Π½Π΅ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΡΡΠΈ ΠΈΠ½Π΅ΡΡΠΈΠ°Π»ΡΠ½ΡΡ ΡΠΈΡΡΠ΅ΠΌ ΠΎΡΡΡΠ΅ΡΠ° ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠ΅Π΄ΡΠΊΠ°Π·Π°Π½Π½ΡΠΉ Π½Π°ΠΌΠΈ Π² 1978 Π³. ΡΡΡΠ΅ΠΊΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ². Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΏΡΠΈΠΌΠ΅ΡΠΎΠ², ΠΈΠ»Π»ΡΡΡΡΠΈΡΡΡΡΠΈΡ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ Π²ΡΠ²ΠΎΠ΄Ρ ΡΠ°Π±ΠΎΡΡ, ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ ΠΏΡΠΎΡΡΠ΅ΠΉΡΠΈΠ΅ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΈΡΡΠ΅ΠΌΡ β ΡΠΎΠ²ΠΎΠΊΡΠΏΠ½ΠΎΡΡΡ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠΎΡΠ΅ΡΠ½ΡΡ ΡΠ°ΡΡΠΈΡ, ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΠΎΠ΅ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ ΠΈ ΠΊΠ²Π°Π½ΡΠΎΠ²Π°Ρ ΡΠΈΡΡΠ΅ΠΌΠ° Π²ΠΎ Π²Π½Π΅ΡΠ½Π΅ΠΌ ΠΏΠΎΠ»Π΅, Π²ΡΠ·ΡΠ²Π°ΡΡΠ΅ΠΌ ΠΊΠ²Π°Π½ΡΠΎΠ²ΡΠ΅ ΠΏΠ΅ΡΠ΅ΡΠΎΠ΄Ρ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΈ Π»ΠΎΡΠ΅Π½ΡΠ΅Π²ΡΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡΡ Π³Π»ΠΎΠ±Π°Π»ΡΠ½ΠΎΠ΅ Π²ΡΠ΅ΠΌΡ ΡΠ°ΡΡΠ΅ΠΏΠ»ΡΠ΅ΡΡΡ Π½Π° Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠΈΡΠ»ΠΎ Π»ΠΎΠΊΠ°Π»ΡΠ½ΡΡ Π²ΡΠ΅ΠΌΠ΅Π½. Π₯ΠΎΡΡ ΡΠΎΡΠΌΠ°Π»ΡΠ½ΠΎ ΡΠ΅Π»ΡΡΠΈΠ²ΠΈΡΡΡΠΊΠ°Ρ ΠΈΠ½Π²Π°ΡΠΈΠ°Π½ΡΠ½ΠΎΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠΎΡΡΠ°Π½ΡΠ΅ΡΡΡ, Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ Π»ΠΎΠΊΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΎΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠΈΡΡΠ΅ΠΌ ΠΎΡΡΡΠ΅ΡΠ° ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΠ΅Ρ ΠΎ ΡΠΎΠΌ, ΡΡΠΎ ΠΊΠ°ΠΆΠ΄Π°Ρ ΠΈΠ½Π΅ΡΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠΈΡΡΠ΅ΠΌΠ° ΠΎΡΡΡΠ΅ΡΠ° ΠΎΠΊΠ°Π·ΡΠ²Π°Π΅ΡΡΡ Π²ΡΠ΄Π΅Π»Π΅Π½Π½ΠΎΠΉ ΠΏΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΊ Π΄ΡΡΠ³ΠΎΠΉ. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΌΠΎΠ³ΡΡ ΡΠ»ΡΠΆΠΈΡΡ ΡΡΡΠΎΠ³ΠΈΠΌ ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π½Π°ΡΠΈΡ Π²ΡΠ²ΠΎΠ΄ΠΎΠ² ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠ²Π΅ΡΠΎΠ²ΠΎΠ³ΠΎ Π±Π°ΡΡΠ΅ΡΠ° ΠΈ ΡΠ²Π΅ΡΡΡΠ²Π΅ΡΠΎΠ²ΠΎΠΉ ΠΊΠΎΠΌΠΌΡΠ½ΠΈΠΊΠ°ΡΠΈΠΈ, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡΡΡ Π² ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠΈΡ ΡΠ°Π±ΠΎΡΠ°Ρ, ΠΈ ΠΎΡΠΊΡΡΠ²Π°ΡΡ ΠΏΡΡΡ ΠΊ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠ΅ΠΎΡΠΈΠΈ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ², ΠΏΡΠΎΠΈΡΡΠΎΠ΄ΡΡΠΈΡ Π² Π΄Π²ΠΈΠΆΡΡΠΈΡΡΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π°Π±Π»ΡΠ΄Π°ΡΠ΅Π»Ρ ΠΈΠ½Π΅ΡΡΠΈΠ°Π»ΡΠ½ΡΡ ΡΠΈΡΡΠ΅ΠΌΠ°Ρ ΠΎΡΡΡΠ΅ΡΠ° (Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, Π½Π° Π·Π²Π΅Π·Π΄Π°Ρ)

### ΠΠΎΠ²Π°Ρ ΠΈΠ½ΡΠ΅ΡΠΏΡΠ΅ΡΠ°ΡΠΈΡ ΡΠ΅Π»ΡΡΠΈΠ²ΠΈΡΡΡΠΊΠΎΠΉ ΡΠΈΠ·ΠΈΠΊΠΈ

In this paper the results of our long-term research in the field of relativistic physics are summed up. The evidences are presented that the inertial reference frames (IRF), moving relative to each other, are not physically equivalent and, as a consequence, physical interpretation of the special theory of relativity (STR), belonging to Einstein, is erroneous. From the physical point of view, the inequality of rights of IRF moving relative to each other is caused by the fact that the local times entering into Lorentz transformations, which relate IRF to each other, essentially differ from the global times, in terms of which the evolution of physical system in IRF, in accord with dynamic principle, is described. The local time represents the time coordinates of points of 4-space-time β some parameters the change of which has nothing to do with dynamic principle. The global time, unlike local, has deep physical meaning: this is the real, physical time, in which the physical system develops and the observer works, and the moments of which coincide with the readings of the observerβs clock in a fixed IRF. Starting from the relativistic equations of motion, it is shown that the length of a rod, moving in some IRF, does not depend on the speed of the rod and equals its proper length. When passing from one IRF to another, the scale of length changes, along the direction of relative motion of reference frames, in that reference frame, into which the transition is made, in comparison with the initial reference frame. The mere change of the scale of length is an indication of the physical nonequivalence of the IRF moving relative to each other, so Lorentz contraction of length is not real, observable effect. According to the results received, rather strict restrictions imposed by causality principle on the motion of the system of several particles are incompatible with Lorentz transformations. As the result of Lorentz transformations, the solutions of dynamic equations as well as the equations themselves are knocked out of the class, to which initial solutions and equations belong. In view of the physical nonequivalence of IRF, the motion of a physical system relative to some reference frame K, transformed to the reference frame K?, moving relative to K, is not a real motion in K?; it represents only a mapping into K? of the motion which takes place in K. The effect of relativity of physical processes predicted by us is just the one which is caused by the fact that the mapping of physical process into some IRF essentially differs from the real process occurring in this reference frame.ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ ΠΈΡΠΎΠ³ ΠΌΠ½ΠΎΠ³ΠΎΠ»Π΅ΡΠ½ΠΈΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΡΠ΅Π»ΡΡΠΈΠ²ΠΈΡΡΡΠΊΠΎΠΉ ΡΠΈΠ·ΠΈΠΊΠΈ, Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΠΊΠΎΡΠΎΡΡΡ Π΄ΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΈΠ½Π΅ΡΡΠΈΠ°Π»ΡΠ½ΡΠ΅ ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΡΡΡΠ΅ΡΠ° (ΠΠ‘Π), Π΄Π²ΠΈΠΆΡΡΠΈΠ΅ΡΡ Π΄ΡΡΠ³ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΄ΡΡΠ³Π°, Π½Π΅ ΡΠ²Π»ΡΡΡΡΡ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΠΌΠΈ ΠΈ, Π²ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ ΡΡΠΎΠ³ΠΎ, ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΈΠ½ΡΠ΅ΡΠΏΡΠ΅ΡΠ°ΡΠΈΡ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ΅ΠΎΡΠΈΠΈ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ (Π‘Π’Π), ΠΏΡΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°ΡΠ°Ρ Π­ΠΉΠ½ΡΡΠ΅ΠΉΠ½Ρ, ΠΎΡΠΈΠ±ΠΎΡΠ½Π°. ΠΠ΅ΡΠ°Π²Π½ΠΎΠΏΡΠ°Π²ΠΈΠ΅ ΠΠ‘Π Ρ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΎΡΠΊΠΈ Π·ΡΠ΅Π½ΠΈΡ ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½ΠΎ ΡΠ΅ΠΌ, ΡΡΠΎ Π»ΠΎΠΊΠ°Π»ΡΠ½ΡΠ΅ Π²ΡΠ΅ΠΌΠ΅Π½Π°, Π²ΡΠΎΠ΄ΡΡΠΈΠ΅ Π² ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΠΠΎΡΠ΅Π½ΡΠ°, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ²ΡΠ·ΡΠ²Π°ΡΡ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠΎΠ±ΠΎΠΉ Π΄Π²ΠΈΠΆΡΡΠΈΠ΅ΡΡ Π΄ΡΡΠ³ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΄ΡΡΠ³Π° ΠΠ‘Π, ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΠΎΡΠ»ΠΈΡΠ°ΡΡΡΡ ΠΎΡ Π³Π»ΠΎΠ±Π°Π»ΡΠ½ΡΡ Π²ΡΠ΅ΠΌΠ΅Π½, Π½Π° ΡΠ·ΡΠΊΠ΅ ΠΊΠΎΡΠΎΡΡΡ ΠΎΠΏΠΈΡΡΠ²Π°Π΅ΡΡΡ ΡΠ²ΠΎΠ»ΡΡΠΈΡ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ Π² ΠΠ‘Π Π² ΡΠΎΠ³Π»Π°ΡΠΈΠΈ Ρ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΏΡΠΈΠ½ΡΠΈΠΏΠΎΠΌ. ΠΠΎΠΊΠ°Π»ΡΠ½ΠΎΠ΅ Π²ΡΠ΅ΠΌΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ Π²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠ΅ΠΊ ΡΠ΅ΡΡΡΠ΅ΡΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π°-Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ β Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ, ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΡΡ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΊ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΌΡ ΠΏΡΠΈΠ½ΡΠΈΠΏΡ. ΠΠ»ΠΎΠ±Π°Π»ΡΠ½ΠΎΠ΅ Π²ΡΠ΅ΠΌΡ, Π² ΠΎΡΠ»ΠΈΡΠΈΠ΅ ΠΎΡ Π»ΠΎΠΊΠ°Π»ΡΠ½ΠΎΠ³ΠΎ, ΠΈΠΌΠ΅Π΅Ρ Π³Π»ΡΠ±ΠΎΠΊΠΈΠΉ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ»: ΡΡΠΎ ΡΠ΅Π°Π»ΡΠ½ΠΎΠ΅, ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π²ΡΠ΅ΠΌΡ, Π² ΠΊΠΎΡΠΎΡΠΎΠΌ ΡΠ°Π·Π²ΠΈΠ²Π°Π΅ΡΡΡ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠΈΡΡΠ΅ΠΌΠ° ΠΈ ΡΠ°Π±ΠΎΡΠ°Π΅Ρ Π½Π°Π±Π»ΡΠ΄Π°ΡΠ΅Π»Ρ, Ρ.Π΅. Π²ΡΠ΅ΠΌΡ, ΠΌΠΎΠΌΠ΅Π½ΡΡ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡΡ Ρ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΈΡΠΌΠΈ ΡΠ°ΡΠΎΠ² Π½Π°Π±Π»ΡΠ΄Π°ΡΠ΅Π»Ρ Π² ΡΠΈΠΊΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΠ‘Π. ΠΡΡΠΎΠ΄Ρ ΠΈΠ· ΡΠ΅Π»ΡΡΠΈΠ²ΠΈΡΡΡΠΊΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ [1], ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π΄Π»ΠΈΠ½Π° ΡΡΠ΅ΡΠΆΠ½Ρ, Π΄Π²ΠΈΠΆΡΡΠ΅Π³ΠΎΡΡ Π² Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΠ‘Π, Π½Π΅ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΡΠ΅ΡΠΆΠ½Ρ ΠΈ ΡΠ°Π²Π½Π° Π΅Π³ΠΎ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΠΎΠΉ Π΄Π»ΠΈΠ½Π΅. ΠΡΠΈ ΠΏΠ΅ΡΠ΅ΡΠΎΠ΄Π΅ ΠΈΠ· ΠΎΠ΄Π½ΠΎΠΉ ΠΠ‘Π Π² Π΄ΡΡΠ³ΡΡ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΠΌΠ°ΡΡΡΠ°Π± Π΄Π»ΠΈΠ½Ρ Π²Π΄ΠΎΠ»Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠΈΡΡΠ΅ΠΌ ΠΎΡΡΡΠ΅ΡΠ° Π² ΡΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΎΡΡΡΠ΅ΡΠ°, Π² ΠΊΠΎΡΠΎΡΡΡ ΡΠΎΠ²Π΅ΡΡΠ°Π΅ΡΡΡ ΠΏΠ΅ΡΠ΅ΡΠΎΠ΄, ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΠΈΡΡΠΎΠ΄Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠΎΠΉ ΠΎΡΡΡΠ΅ΡΠ°. Π‘Π°ΠΌΠΎ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΌΠ°ΡΡΡΠ°Π±Π° Π΄Π»ΠΈΠ½Ρ ΡΠ»ΡΠΆΠΈΡ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠΌ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π½Π΅ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΡΡΠΈ Π΄Π²ΠΈΠΆΡΡΠΈΡΡΡ Π΄ΡΡΠ³ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΄ΡΡΠ³Π° ΠΠ‘Π, ΡΠ°ΠΊ ΡΡΠΎ Π»ΠΎΡΠ΅Π½ΡΠ΅Π²ΠΎ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ Π½Π΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ΅Π°Π»ΡΠ½ΡΠΌ, Π½Π°Π±Π»ΡΠ΄Π°Π΅ΠΌΡΠΌ ΡΡΡΠ΅ΠΊΡΠΎΠΌ. Π‘ΠΎΠ³Π»Π°ΡΠ½ΠΎ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠΌ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌ, Π²Π΅ΡΡΠΌΠ° ΠΆΠ΅ΡΡΠΊΠΈΠ΅ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΈΡ, Π½Π°ΠΊΠ»Π°Π΄ΡΠ²Π°Π΅ΠΌΡΠ΅ ΠΏΡΠΈΠ½ΡΠΈΠΏΠΎΠΌ ΠΏΡΠΈΡΠΈΠ½Π½ΠΎΡΡΠΈ Π½Π° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠΈΡΡΠ΅ΠΌΡ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ ΡΠ°ΡΡΠΈΡ, Π½Π΅ΡΠΎΠ²ΠΌΠ΅ΡΡΠΈΠΌΡ Ρ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡΠΌΠΈ ΠΠΎΡΠ΅Π½ΡΠ°. ΠΠ°ΠΊ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ, ΡΠ°ΠΊ ΠΈ ΡΠ°ΠΌΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π²ΡΠ±ΠΈΠ²Π°ΡΡΡΡ, Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΠΠΎΡΠ΅Π½ΡΠ°, ΠΈΠ· ΡΠΎΠ³ΠΎ ΠΊΠ»Π°ΡΡΠ°, ΠΊ ΠΊΠΎΡΠΎΡΠΎΠΌΡ ΠΏΡΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ ΠΈΡΡΠΎΠ΄Π½ΡΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. ΠΠ²ΠΈΠ΄Ρ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π½Π΅ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΡΡΠΈ ΠΠ‘Π, Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΡΡΡΠ΅ΡΠ° K, ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½Π½ΠΎΠ΅ Π² ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΡΡΡΠ΅ΡΠ° K?, Π΄Π²ΠΈΠΆΡΡΡΡΡΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ K, Π½Π΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ΅Π°Π»ΡΠ½ΡΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π² K?, ΠΎΠ½ΠΎ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ Π»ΠΈΡΡ ΠΎΡΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π² K? ΡΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΏΡΠΎΠΈΡΡΠΎΠ΄ΠΈΡ Π² K. ΠΡΠ΅Π΄ΡΠΊΠ°Π·Π°Π½Π½ΡΠΉ Π½Π°ΠΌΠΈ ΡΡΡΠ΅ΠΊΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² ΠΊΠ°ΠΊ ΡΠ°Π· ΠΈ ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½ ΡΠ΅ΠΌ, ΡΡΠΎ ΠΎΡΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ° Π² Π½Π΅ΠΊΠΎΡΠΎΡΡΡ ΠΠ‘Π ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΠΎΡΠ»ΠΈΡΠ°Π΅ΡΡΡ ΠΎΡ ΡΠ΅Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ°, ΠΏΡΠΎΡΠ΅ΠΊΠ°ΡΡΠ΅Π³ΠΎ Π² ΡΡΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΎΡΡΡΠ΅ΡΠ°

### ΠΠ°ΡΡΠ° ΡΠ΅Π»ΡΡΠΈΠ²ΠΈΡΡΡΠΊΠΎΠΉ ΡΠ°ΡΡΠΈΡΡ ΠΊΠ°ΠΊ ΡΡΠ½ΠΊΡΠΈΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΉ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ. Π€ΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ

The work is the completion of a series of articles devoted to the study of accelerated motions by inertia [1-15]. The main research results: the physical nature of accelerated motions by inertia (AMI) and particle masses is revealed; it is shown that they play leading roles in the play, which is called the stable development of matter; the cause of the difficulties that physics is now experiencing is established, and the right way to overcome them is found. The disclosure of the physical nature of AMI and the particle mass made it possible to establish the cause of a deep crisis of physical science. P.A.M. Dirac, one of the creators of quantum electrodynamics (QED), drew at-tention to the existence of a crisis in physics in the middle of the last century [16], [17] (p. 403). He argued that the basic equations of electrodynamics were incorrect, but did not explain the reason for the difficulties of QED. The reason is the incompleteness of the special theory of relativity (STR), which forms the foundation of QED. The incompleteness of STR is expressed in the fact that STR considers only forced accelerated motions and it is assumed that the particle mass is a constant parameter. AMI fell out of the field of view of SRT, although these movements of particles play an extremely important role in the development of matter. AMI are an attribute of matter, they occur with the acceleration of particles, but do not lead to energy loss of particles. AMI form such a functional dependence of the mass of particles on velocities and coordinates of particles, which ensures the sta-ble development of matter. AMI generate force fields with the help of which the interaction between particles occurs. It was shown that the particle mass depends not only on the particle velocity modulus, as it was assumed in pre-vious works, but also on the particleβs position in space, i.e. mass is a function of motion states. The existence of dependence of the particle mass on the position of the particle in space is of great importance for the evolution of matter, since the possibilities of matter to organize the stable development of its structural elements are ex-tremely expanded. The mass equation is derived from the energy conservation condition. It is a second-order partial differential equation. In the particular case, when the mass of the particle does not depend on the posi-tion of the particle in space, this equation transforms into an ordinary differential equation of the second order, obtained and studied in [14, 15]. The equation for the particle mass acts as a kind of dynamic principle for the proper motions of the particle. In physical content, the equation for mass is significantly different from the equations of forced motions. If the equation for mass serves to determine mass as a function of the state of motion of the particle, the equations of motion determine the development in time of the state of motion itself. The physical properties of accelerated motions by inertia are investigated, and proper and forced motions, which are dialectical opposites, are compared. There is a qualitative difference between the forces acting on a particle in forced and in its proper motions: in a forced motion, the force is the cause of acceleration, and its proper motions are the result of acceleration. A change in the mass of a particle with a change in the position of a particle in space causes the heterogeneity and non-isotropy of space and the heterogeneity of time. A new approach is formulated in relativistic mechanics, in which there are no difficulties with the incom-pleteness of the theory inherent to STR. Unlike STR, in the formulation of mechanics developed here, both proper motions of particles and forced ones are taken into account; not the motions of free, bare particles that do not exist in nature, but accelerated motions by inertia (AMI) β the motions of real, physical particles are considered as motions by inertia; the assumption that the particle mass is a constant parameter is not used; mass acts as a function of the state of motion; the functional dependence of the particle mass on the coordi-nates and velocities is formed by AMI and is determined by the equation for the mass, which guarantees the conservation of particle energy (in the absence of external field). Based on the results obtained, the following conclusion can be formulated. The reason for the crisis of physics is STR, which is the basis of electrodynamics. STR is an abstract mathematical scheme, which due to its in-completeness cannot describe physical reality. Matter, as a self-organizing, self-governing, thinking entity, pre-fers to develop in a completely different way than STR prescribes for it. The work is an extension and continua-tion of studies [22, 23] in the field of quantum electrodynamics.Π Π°Π±ΠΎΡΠ° ΡΠ²Π»ΡΠ΅ΡΡΡ Π·Π°Π²Π΅ΡΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΠΈΠΊΠ»Π° ΡΡΠ°ΡΠ΅ΠΉ, ΠΏΠΎΡΠ²ΡΡΠ΅Π½Π½ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ [1β15]. ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ: ΡΠ°ΡΠΊΡΡΡΠ° ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΏΡΠΈΡΠΎΠ΄Π° ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ (Π£ΠΠ) ΠΈ ΠΌΠ°ΡΡΡ ΡΠ°ΡΡΠΈΡΡ; ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π£ΠΠ ΠΈ ΠΌΠ°ΡΡΠ° ΡΠ°ΡΡΠΈΡΡ ΠΈΠ³ΡΠ°ΡΡ Π²Π΅Π΄ΡΡΠΈΠ΅ ΡΠΎΠ»ΠΈ Π² ΡΠΏΠ΅ΠΊΡΠ°ΠΊΠ»Π΅, ΠΊΠΎΡΠΎΡΡΠΉ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΡΠΌ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ΠΌ ΠΌΠ°ΡΠ΅ΡΠΈΠΈ; ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π° ΠΏΡΠΈΡΠΈΠ½Π° ΡΡΡΠ΄Π½ΠΎΡΡΠ΅ΠΉ, ΠΏΠ΅ΡΠ΅ΠΆΠΈΠ²Π°Π΅ΠΌΡΡ Π½ΡΠ½Π΅ ΡΠΈΠ·ΠΈΠΊΠΎΠΉ, ΠΈ Π½Π°ΠΉΠ΄Π΅Π½ Π²Π΅ΡΠ½ΡΠΉ ΠΏΡΡΡ ΠΈΡ ΠΏΡΠ΅ΠΎΠ΄ΠΎΠ»Π΅Π½ΠΈΡ. Π Π°ΡΠΊΡΡΡΠΈΠ΅ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠΈΡΠΎΠ΄Ρ Π£ΠΠ ΠΈ ΠΌΠ°ΡΡΡ ΡΠ°ΡΡΠΈΡΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΡΡΡΠ°Π½ΠΎΠ²ΠΈΡΡ ΠΏΡΠΈΡΠΈΠ½Ρ Π³Π»ΡΠ±ΠΎΠΊΠΎΠ³ΠΎ ΠΊΡΠΈΠ·ΠΈΡΠ° ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π½Π°ΡΠΊΠΈ. ΠΠ° ΡΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΡΠΈΠ·ΠΈΡΠ° ΡΠΈΠ·ΠΈΠΊΠΈ ΠΎΠ±ΡΠ°ΡΠΈΠ» Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π.Π.Π. ΠΠΈΡΠ°ΠΊ, ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΡΠΎΠ·Π΄Π°ΡΠ΅Π»Π΅ΠΉ ΠΊΠ²Π°Π½ΡΠΎΠ²ΠΎΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ (ΠΠ­Π), Π΅ΡΠ΅ Π² ΡΠ΅ΡΠ΅Π΄ΠΈΠ½Π΅ ΠΏΡΠΎΡΠ»ΠΎΠ³ΠΎ Π²Π΅ΠΊΠ° [16, 17, Ρ.403]. ΠΠ½ ΡΡΠ²Π΅ΡΠΆΠ΄Π°Π», ΡΡΠΎ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ Π½Π΅Π²Π΅ΡΠ½Ρ, Π½ΠΎ Π½Π΅ ΡΠ°Π·ΡΡΡΠ½ΠΈΠ» ΠΏΡΠΈΡΠΈΠ½Ρ ΡΡΡΠ΄Π½ΠΎΡΡΠ΅ΠΉ ΠΠ­Π. ΠΡΠΈΡΠΈΠ½ΠΎΠΉ ΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π΅ΠΏΠΎΠ»Π½ΠΎΡΠ° ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ΅ΠΎΡΠΈΠΈ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ (Π‘Π’Π), ΡΠΎΡΡΠ°Π²Π»ΡΡΡΠ΅ΠΉ ΡΡΠ½Π΄Π°ΠΌΠ΅Π½Ρ ΠΠ­Π. ΠΠ΅ΠΏΠΎΠ»Π½ΠΎΡΠ° Π‘Π’Π Π²ΡΡΠ°ΠΆΠ°Π΅ΡΡΡ Π² ΡΠΎΠΌ, ΡΡΠΎ Π² Π‘Π’Π ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡΡΡ ΡΠΎΠ»ΡΠΊΠΎ Π²ΡΠ½ΡΠΆΠ΄Π΅Π½Π½ΡΠ΅ ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΈ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΡΡΡ, ΡΡΠΎ ΠΌΠ°ΡΡΠ° ΡΠ°ΡΡΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠΎΡΡΠΎΡΠ½Π½ΡΠΌ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠΌ. ΠΠ· ΠΏΠΎΠ»Ρ Π·ΡΠ΅Π½ΠΈΡ Π‘Π’Π Π²ΡΠΏΠ°Π΄Π°ΡΡ Π£ΠΠ β ΡΠ°ΠΊΠΈΠ΅ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ°ΡΡΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΈΠ³ΡΠ°ΡΡ ΠΈΡΠΊΠ»ΡΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π²Π°ΠΆΠ½ΡΡ ΡΠΎΠ»Ρ Π² ΡΠ°Π·Π²ΠΈΡΠΈΠΈ ΠΌΠ°ΡΠ΅ΡΠΈΠΈ. Π£ΠΠ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡ ΡΠΎΠ±ΠΎΠΉ Π°ΡΡΠΈΠ±ΡΡ ΠΌΠ°ΡΠ΅ΡΠΈΠΈ, ΠΎΠ½ΠΈ ΠΏΡΠΎΠΈΡΡΠΎΠ΄ΡΡ Ρ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΠ°ΡΡΠΈΡ, Π½ΠΎ Π½Π΅ ΠΏΡΠΈΠ²ΠΎΠ΄ΡΡ ΠΊ ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΏΠΎΡΠ΅ΡΡΠΌ ΡΠ°ΡΡΠΈΡ. Π£ΠΠ ΡΠΎΡΠΌΠΈΡΡΡΡ ΡΠ°ΠΊΡΡ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΌΠ°ΡΡΡ ΡΠ°ΡΡΠΈΡ ΠΎΡ ΡΠΊΠΎΡΠΎΡΡΠ΅ΠΉ ΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΡΠ°ΡΡΠΈΡ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°Π΅Ρ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΠ΅ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠΈ. Π£ΠΠ ΠΏΠΎΡΠΎΠΆΠ΄Π°ΡΡ ΡΠΈΠ»ΠΎΠ²ΡΠ΅ ΠΏΠΎΠ»Ρ, Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΊΠΎΡΠΎΡΡΡ ΠΏΡΠΎΠΈΡΡΠΎΠ΄ΠΈΡ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ°ΡΡΠΈΡΠ°ΠΌΠΈ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΌΠ°ΡΡΠ° ΡΠ°ΡΡΠΈΡΡ Π·Π°Π²ΠΈΡΠΈΡ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ ΠΎΡ ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ°ΡΡΠΈΡΡ, ΠΊΠ°ΠΊ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π»ΠΎΡΡ Π² ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠΈΡ ΡΠ°Π±ΠΎΡΠ°Ρ, Π½ΠΎ ΠΈ ΠΎΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°ΡΡΠΈΡΡ Π² ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅, Ρ.Π΅. ΠΌΠ°ΡΡΠ° ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΡΠ½ΠΊΡΠΈΠ΅ΠΉ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΉ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ. Π‘ΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΠ΅ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΌΠ°ΡΡΡ ΡΠ°ΡΡΠΈΡΡ ΠΎΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°ΡΡΠΈΡΡ Π² ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅ ΠΈΠΌΠ΅Π΅Ρ Π±ΠΎΠ»ΡΡΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π΄Π»Ρ ΡΠ²ΠΎΠ»ΡΡΠΈΠΈ ΠΌΠ°ΡΠ΅ΡΠΈΠΈ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΡΡΠ΅Π·Π²ΡΡΠ°ΠΉΠ½ΠΎ ΡΠ°ΡΡΠΈΡΡΡΡΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΠΌΠ°ΡΠ΅ΡΠΈΠΈ ΠΏΠΎ ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΈ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π·Π²ΠΈΡΠΈΡ Π΅Π΅ ΡΡΡΡΠΊΡΡΡΠ½ΡΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ². ΠΠ· ΡΡΠ»ΠΎΠ²ΠΈΡ ΡΠΎΡΡΠ°Π½Π΅Π½ΠΈΡ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΡΠ°ΡΡΠΈΡΡ Π²ΡΠ²Π΅Π΄Π΅Π½ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π»Ρ ΠΌΠ°ΡΡΡ. ΠΠ½ΠΎ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ° Ρ ΡΠ°ΡΡΠ½ΡΠΌΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠΌΠΈ. Π ΡΠ°ΡΡΠ½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅, ΠΊΠΎΠ³Π΄Π° ΠΌΠ°ΡΡΠ° ΡΠ°ΡΡΠΈΡΡ Π½Π΅ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°ΡΡΠΈΡΡ Π² ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅, ΡΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠ΅ΡΠΎΠ΄ΠΈΡ Π² ΠΎΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΠΎΠ΅ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ°, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ΅ ΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π½ΠΎΠ΅ Π² ΡΠ°Π±ΠΎΡΠ°Ρ [14, 15]. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π»Ρ ΠΌΠ°ΡΡΡ ΡΠ°ΡΡΠΈΡΡ Π²ΡΡΡΡΠΏΠ°Π΅Ρ Π² ΡΠΎΠ»ΠΈ ΡΠ²ΠΎΠ΅ΠΎΠ±ΡΠ°Π·Π½ΠΎΠ³ΠΎ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΈΠ½ΡΠΈΠΏΠ° Π΄Π»Ρ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ ΡΠ°ΡΡΠΈΡΡ. ΠΠΎ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΌΡ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π»Ρ ΠΌΠ°ΡΡΡ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΠΎΡΠ»ΠΈΡΠ°Π΅ΡΡΡ ΠΎΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Π²ΡΠ½ΡΠΆΠ΄Π΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ. ΠΡΠ»ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π»Ρ ΠΌΠ°ΡΡΡ ΡΠ»ΡΠΆΠΈΡ Π΄Π»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΌΠ°ΡΡΡ ΠΊΠ°ΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ°ΡΡΠΈΡΡ, ΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ Π²ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠ°ΠΌΠΎΠ³ΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ ΠΈ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΡ ΠΈ Π²ΡΠ½ΡΠΆΠ΄Π΅Π½Π½ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ²Π»ΡΡΡΡΡ Π΄ΠΈΠ°Π»Π΅ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΡΡΡΠΌΠΈ. ΠΠ΅ΠΆΠ΄Ρ ΡΠΈΠ»Π°ΠΌΠΈ, Π΄Π΅ΠΉΡΡΠ²ΡΡΡΠΈΠΌΠΈ Π½Π° ΡΠ°ΡΡΠΈΡΡ Π² Π²ΡΠ½ΡΠΆΠ΄Π΅Π½Π½ΠΎΠΌ ΠΈ Π² ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡΡ, ΠΈΠΌΠ΅Π΅ΡΡΡ ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ΅ ΡΠ°Π·Π»ΠΈΡΠΈΠ΅: Π² Π²ΡΠ½ΡΠΆΠ΄Π΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΡΠΈΠ»Π° ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠΈΡΠΈΠ½ΠΎΠΉ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ, Π° Π² ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΠΎΠΌ β ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ΠΌ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ. ΠΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΌΠ°ΡΡΡ ΡΠ°ΡΡΠΈΡΡ ΠΏΡΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°ΡΡΠΈΡΡ Π² ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅ Π²ΡΠ·ΡΠ²Π°Π΅Ρ Π½Π΅ΠΎΠ΄Π½ΠΎΡΠΎΠ΄Π½ΠΎΡΡΡ ΠΈ Π½Π΅ΠΈΠ·ΠΎΡΡΠΎΠΏΠ½ΠΎΡΡΡ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π° ΠΈ Π½Π΅ΠΎΠ΄Π½ΠΎΡΠΎΠ΄Π½ΠΎΡΡΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. Π‘ΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½ Π½ΠΎΠ²ΡΠΉ ΠΏΠΎΠ΄ΡΠΎΠ΄ Π² ΡΠ΅Π»ΡΡΠΈΠ²ΠΈΡΡΡΠΊΠΎΠΉ ΠΌΠ΅ΡΠ°Π½ΠΈΠΊΠ΅, Π² ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΎΡΡΡΡΡΡΠ²ΡΡΡ ΡΡΡΠ΄Π½ΠΎΡΡΠΈ Ρ Π½Π΅ΠΏΠΎΠ»Π½ΠΎΡΠΎΠΉ ΡΠ΅ΠΎΡΠΈΠΈ, ΠΏΡΠΈΡΡΡΠΈΠ΅ Π‘Π’Π. Π ΠΎΡΠ»ΠΈΡΠΈΠ΅ ΠΎΡ Π‘Π’Π, Π² ΡΠ°Π·Π²ΠΈΠ²Π°Π΅ΠΌΠΎΠΉ Π·Π΄Π΅ΡΡ ΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²ΠΊΠ΅ ΠΌΠ΅ΡΠ°Π½ΠΈΠΊΠΈ ΡΡΠΈΡΡΠ²Π°ΡΡΡΡ ΠΊΠ°ΠΊ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ°ΡΡΠΈΡ, ΡΠ°ΠΊ ΠΈ Π²ΡΠ½ΡΠΆΠ΄Π΅Π½Π½ΡΠ΅; Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡΡΡ Π½Π΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΡ, Π³ΠΎΠ»ΡΡ ΡΠ°ΡΡΠΈΡ, Π½Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΡΡΠΈΠ΅ Π² ΠΏΡΠΈΡΠΎΠ΄Π΅, Π° ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ (Π£ΠΠ) β Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π°Π»ΡΠ½ΡΡ, ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ°ΡΡΠΈΡ; Π½Π΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΎ ΡΠΎΠΌ, ΡΡΠΎ ΠΌΠ°ΡΡΠ° ΡΠ°ΡΡΠΈΡΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠΎΡΡΠΎΡΠ½Π½ΡΠΌ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠΌ; ΠΌΠ°ΡΡΠ° Π²ΡΡΡΡΠΏΠ°Π΅Ρ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ; ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½Π°Ρ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΌΠ°ΡΡΡ ΡΠ°ΡΡΠΈΡΡ ΠΎΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠΎΡΠΌΠΈΡΡΠ΅ΡΡΡ ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΠΌΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡΠΌΠΈ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ Π΄Π»Ρ ΠΌΠ°ΡΡΡ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π°ΡΠ°Π½ΡΠΈΡΡΠ΅Ρ ΡΠΎΡΡΠ°Π½Π΅Π½ΠΈΠ΅ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΡΠ°ΡΡΠΈΡΡ (Π² ΠΎΡΡΡΡΡΡΠ²ΠΈΠ΅ Π²Π½Π΅ΡΠ½Π΅Π³ΠΎ ΠΏΠΎΠ»Ρ). ΠΠ° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΌΠΎΠΆΠ½ΠΎ ΡΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°ΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΉ Π²ΡΠ²ΠΎΠ΄. ΠΡΠΈΡΠΈΠ½ΠΎΠΉ ΠΊΡΠΈΠ·ΠΈΡΠ° ΡΠΈΠ·ΠΈΠΊΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ Π‘Π’Π, ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Π°Ρ Π² ΠΎΡΠ½ΠΎΠ²Ρ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ. Π‘Π’Π ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ Π°Π±ΡΡΡΠ°ΠΊΡΠ½ΡΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΡΡ ΡΡΠ΅ΠΌΡ, ΠΊΠΎΡΠΎΡΠ°Ρ Π²ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ Π΅Π΅ Π½Π΅ΠΏΠΎΠ»Π½ΠΎΡΡ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ ΠΎΠΏΠΈΡΡΠ²Π°ΡΡ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΡΡ ΡΠ΅Π°Π»ΡΠ½ΠΎΡΡΡ. ΠΠ°ΡΠ΅ΡΠΈΡ, ΠΊΠ°ΠΊ ΡΠ°ΠΌΠΎΠΎΡΠ³Π°Π½ΠΈΠ·ΡΡΡΠ°ΡΡΡ, ΡΠ°ΠΌΠΎΡΠΏΡΠ°Π²Π»ΡΠ΅ΠΌΠ°Ρ, ΠΌΡΡΠ»ΡΡΠ°Ρ ΡΡΡΠ½ΠΎΡΡΡ, ΠΏΡΠ΅Π΄ΠΏΠΎΡΠΈΡΠ°Π΅Ρ ΡΠ°Π·Π²ΠΈΠ²Π°ΡΡΡΡ ΡΠΎΠ²Π΅ΡΡΠ΅Π½Π½ΠΎ ΠΈΠ½Π°ΡΠ΅, ΡΠ΅ΠΌ ΠΏΡΠ΅Π΄ΠΏΠΈΡΡΠ²Π°Π΅Ρ Π΅ΠΉ Π‘Π’Π. Π Π°Π±ΠΎΡΠ° ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ΠΌ ΠΈ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠ΅Π½ΠΈΠ΅ΠΌ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ [22, 23] Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΠΊΠ²Π°Π½ΡΠΎΠ²ΠΎΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ

### Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ ΠΠΈΡΠ°ΠΊΠ°: ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΡ

Physical consequences of the solution to the problem, formulated by P.A.M.Dirac more than 50 years ago [1-4], are discussed. According to our results on the Dirac problem, presented in [5-7], the reason for the difficulties of electrodynamics is the incompleteness of Newtonian mechanics and Maxwell's electrodynamics. Incompleteness of the theory derives from the fact that a huge class of motions of material particles, which we call the curvilinear motions by inertia (CMI), dropped out of the field of view of the conventional approach. In the conventional formulation of the theory, some restrictions (bans) are imposed on the motions of particles, which are not consistent with the basic laws of nature - the laws of dialectics and do not follow from experimental data. These restrictions have played in physics a role of heavy chains that have led physics, to a great extent, to the current crisis. The CMI (curvilinear motions by inertia) are natural generalizations of the inertial motions, defined by the Galilee inertia principle, to the case of motions along curved paths. These motions fell out of the field of view of Newtonian scheme of mechanics because of motion restrictions used in the scheme. On the particle, moving by inertia with acceleration, a force acts (we call it the inertia force) which in contrast to the Newtonian inertial force does not depend on the external force acting on particle on the part of its environment. Because the accelerated motions of particles can be not only the forced motions caused by an external force but also the inertial motions, the interaction force between the particles does not obey the Coulomb law. For this reason, the equations of motion of electromagnetic field significantly differ from the Maxwell equations. On the basis of the CMI of classical particle and without using the hypothesis of the existence of electrical charges that create the Coulomb field, the electromagnetic field equations are obtained. Classical particles moving along a curved path by inertia are shown to generate the induced electric and magnetic charges. Their peculiarity consists in that they are not localized on the particle generating electromagnetic field, but are distributed, Β«smearedΒ» in the region of space in which the particle moves with acceleration by inertia. Contrary to generally accepted ideas, the laws of Newton underlying the classical mechanics are applicable only to macroscopic bodies, which are subject to the condition that the force field generated by body has the properties of an external field. Due to the existence of the CMI, the individual particles do not satisfy this condition. For this reason, their behavior can not be described by the Newton laws. In particular, contrary to the second Newtonβs law, the individual particles can move by inertia with acceleration in the absence of external force. It follows from the results obtained that there exists a qualitatively new model of atom in which the bound state of classical particles is ensured by inertial forces acting on the particles moving by inertia with acceleration rather than by the Coulomb forces. The mechanism of formation of bound state of two particles due to the curvilinear motion of particles by inertia explains the phenomenon of cold nuclear fusion (CNF), which can not be explained within the framework of standard theory because of its incompleteness. Solution of the Dirac problem based on the CMI can be a turning point in the development of physics. Removing unjustified restrictions on the motion and practical mastering the CMI will give a powerful impetus to the development of science and technology, leading to the construction of a new physical picture of the world and the creation of qualitatively new technologies in the field of energy, transport, communications.ΠΠ±ΡΡΠΆΠ΄Π°ΡΡΡΡ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΡ, Π²ΡΡΠ΅ΠΊΠ°ΡΡΠΈΠ΅ ΠΈΠ· ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ, ΡΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ Π.Π.Π. ΠΠΈΡΠ°ΠΊΠΎΠΌ Π±ΠΎΠ»Π΅Π΅ 50 Π»Π΅Ρ Π½Π°Π·Π°Π΄ [1β4]. Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ ΠΠΈΡΠ°ΠΊΠ° ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΎ Π² ΡΠ°Π±ΠΎΡΠ°Ρ [5-7], Π² ΠΊΠΎΡΠΎΡΡΡ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΈΡΠΈΠ½ΠΎΠΉ ΡΡΡΠ΄Π½ΠΎΡΡΠ΅ΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π΅ΠΏΠΎΠ»Π½ΠΎΡΠ° ΠΌΠ΅ΡΠ°Π½ΠΈΠΊΠΈ ΠΡΡΡΠΎΠ½Π° ΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ ΠΠ°ΠΊΡΠ²Π΅Π»Π»Π°. ΠΠ΅ΠΏΠΎΠ»Π½ΠΎΡΠ° ΡΠ΅ΠΎΡΠΈΠΈ ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½Π° ΡΠ΅ΠΌ, ΡΡΠΎ ΠΈΠ· ΠΏΠΎΠ»Ρ Π·ΡΠ΅Π½ΠΈΡ ΠΎΠ±ΡΠ΅ΠΏΡΠΈΠ½ΡΡΠΎΠ³ΠΎ ΠΏΠΎΠ΄ΡΠΎΠ΄Π° Π²ΡΠΏΠ°Π» ΠΎΠ³ΡΠΎΠΌΠ½ΡΠΉ ΠΊΠ»Π°ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΡ ΡΠ°ΡΡΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΡ Π½Π°Π·ΡΠ²Π°Π΅ΠΌ ΠΊΡΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΡΠΌΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡΠΌΠΈ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ (ΠΠΠ). Π ΠΎΠ±ΡΠ΅ΠΏΡΠΈΠ½ΡΡΠΎΠΉ ΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²ΠΊΠ΅ ΡΠ΅ΠΎΡΠΈΠΈ Π½Π° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ°ΡΡΠΈΡ Π½Π°ΠΊΠ»Π°Π΄ΡΠ²Π°ΡΡΡΡ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΈΡ (Π·Π°ΠΏΡΠ΅ΡΡ), ΠΊΠΎΡΠΎΡΡΠ΅ Π½Π΅ ΡΠ»Π΅Π΄ΡΡΡ ΠΈΠ· ΠΎΠΏΡΡΠ½ΡΡ Π΄Π°Π½Π½ΡΡ ΠΈ Π½Π΅ ΡΠΎΠ³Π»Π°ΡΡΡΡΡΡ Ρ ΠΎΡΠ½ΠΎΠ²Π½ΡΠΌΠΈ Π·Π°ΠΊΠΎΠ½Π°ΠΌΠΈ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΏΡΠΈΡΠΎΠ΄Ρ β Π·Π°ΠΊΠΎΠ½Π°ΠΌΠΈ Π΄ΠΈΠ°Π»Π΅ΠΊΡΠΈΠΊΠΈ. Π­ΡΠΈ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΈΡ ΡΡΠ³ΡΠ°Π»ΠΈ Π² ΡΠΈΠ·ΠΈΠΊΠ΅ ΡΠΎΠ»Ρ ΡΡΠΆΠΊΠΈΡ ΠΎΠΊΠΎΠ², ΠΊΠΎΡΠΎΡΡΠ΅, Π² Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΌΠ΅ΡΠ΅, ΠΈ ΠΏΡΠΈΠ²Π΅Π»ΠΈ ΡΠΈΠ·ΠΈΠΊΡ ΠΊ Π½ΡΠ½Π΅ΡΠ½Π΅ΠΌΡ ΠΊΡΠΈΠ·ΠΈΡΠ½ΠΎΠΌΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ. ΠΠΠ (ΠΊΡΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ) ΡΠ²Π»ΡΡΡΡΡ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠΌ ΠΎΠ±ΠΎΠ±ΡΠ΅Π½ΠΈΠ΅ΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ, ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΡ ΠΏΡΠΈΠ½ΡΠΈΠΏΠΎΠΌ ΠΈΠ½Π΅ΡΡΠΈΠΈ ΠΠ°Π»ΠΈΠ»Π΅Ρ, Π½Π° ΡΠ»ΡΡΠ°ΠΉ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ ΠΏΠΎ ΠΊΡΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΡΠΌ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΡΠΌ. Π£ΠΊΠ°Π·Π°Π½Π½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π²ΡΠΏΠ°Π΄Π°ΡΡ ΠΈΠ· ΡΡΠ΅ΠΌΡ ΠΌΠ΅ΡΠ°Π½ΠΈΠΊΠΈ ΠΡΡΡΠΎΠ½Π° Π²ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ ΡΠ΅Ρ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΈΠΉ Π½Π° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ Π² ΡΡΠΎΠΉ ΡΡΠ΅ΠΌΠ΅. ΠΠ° ΡΠ°ΡΡΠΈΡΡ, Π΄Π²ΠΈΠΆΡΡΡΡΡΡ ΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ, Π΄Π΅ΠΉΡΡΠ²ΡΠ΅Ρ ΡΠΈΠ»Π° (ΠΌΡ Π½Π°Π·ΡΠ²Π°Π΅ΠΌ Π΅Π΅ ΡΠΈΠ»ΠΎΠΉ ΠΈΠ½Π΅ΡΡΠΈΠΈ), ΠΊΠΎΡΠΎΡΠ°Ρ, Π² ΠΎΡΠ»ΠΈΡΠΈΠ΅ ΠΎΡ ΠΡΡΡΠΎΠ½ΠΎΠ²ΡΠΊΠΎΠΉ ΡΠΈΠ»Ρ ΠΈΠ½Π΅ΡΡΠΈΠΈ, Π½Π΅ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ Π²Π½Π΅ΡΠ½Π΅ΠΉ ΡΠΈΠ»Ρ, Π΄Π΅ΠΉΡΡΠ²ΡΡΡΠ΅ΠΉ Π½Π° ΡΠ°ΡΡΠΈΡΡ ΡΠΎ ΡΡΠΎΡΠΎΠ½Ρ ΠΎΠΊΡΡΠΆΠ΅Π½ΠΈΡ. ΠΠ²ΠΈΠ΄Ρ ΡΠΎΠ³ΠΎ, ΡΡΠΎ ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ°ΡΡΠΈΡΡ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ Π²ΡΠ½ΡΠΆΠ΄Π΅Π½Π½ΡΠΌΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡΠΌΠΈ, Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡΡΠΈΠΌΠΈ ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ Π²Π½Π΅ΡΠ½Π΅ΠΉ ΡΠΈΠ»Ρ, Π½ΠΎ ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡΠΌΠΈ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ, ΡΠΈΠ»Π° Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ°ΡΡΠΈΡΠ°ΠΌΠΈ Π½Π΅ ΠΏΠΎΠ΄ΡΠΈΠ½ΡΠ΅ΡΡΡ Π·Π°ΠΊΠΎΠ½Ρ ΠΡΠ»ΠΎΠ½Π°. ΠΠΎ ΡΡΠΎΠΉ ΠΏΡΠΈΡΠΈΠ½Π΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΠΎΡΠ»ΠΈΡΠ°ΡΡΡΡ ΠΎΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΠ°ΠΊΡΠ²Π΅Π»Π»Π°. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ Π²ΡΠ²Π΅Π΄Π΅Π½Ρ ΠΈΠ· ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½ΠΈΡ ΠΠΠ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ°ΡΡΠΈΡΡ, Π±Π΅Π· ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ Π³ΠΈΠΏΠΎΡΠ΅Π·Ρ ΠΎ ΡΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΠΈ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ Π·Π°ΡΡΠ΄ΠΎΠ², ΡΠΎΠ·Π΄Π°ΡΡΠΈΡ ΠΊΡΠ»ΠΎΠ½ΠΎΠ²ΡΠΊΠΎΠ΅ ΠΏΠΎΠ»Π΅. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ°ΡΡΠΈΡΡ, Π΄Π²ΠΈΠΆΡΡΠΈΠ΅ΡΡ ΠΏΠΎ ΠΊΡΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΠΈ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ, ΠΏΠΎΡΠΎΠΆΠ΄Π°ΡΡ ΠΈΠ½Π΄ΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈ ΠΌΠ°Π³Π½ΠΈΡΠ½ΡΠ΅ Π·Π°ΡΡΠ΄Ρ. ΠΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΡ ΠΏΠΎΡΠ»Π΅Π΄Π½ΠΈΡ ΡΠΎΡΡΠΎΠΈΡ Π² ΡΠΎΠΌ, ΡΡΠΎ ΠΎΠ½ΠΈ Π½Π΅ Π»ΠΎΠΊΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Ρ Π½Π° ΡΠ°ΡΡΠΈΡΠ΅, ΠΏΠΎΡΠΎΠΆΠ΄Π°ΡΡΠ΅ΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ΅ ΠΏΠΎΠ»Π΅, Π° ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ, Β«ΡΠ°Π·ΠΌΠ°Π·Π°Π½ΡΒ» Π² ΡΠΎΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π°, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΏΡΠΎΠΈΡΡΠΎΠ΄ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ°ΡΡΠΈΡΡ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ. ΠΠΎΠΏΡΠ΅ΠΊΠΈ ΠΎΠ±ΡΠ΅ΠΏΡΠΈΠ½ΡΡΡΠΌ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΡΠΌ, Π·Π°ΠΊΠΎΠ½Ρ ΠΡΡΡΠΎΠ½Π°, Π»Π΅ΠΆΠ°ΡΠΈΠ΅ Π² ΠΎΡΠ½ΠΎΠ²Π΅ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠ΅ΡΠ°Π½ΠΈΠΊΠΈ, ΠΏΡΠΈΠΌΠ΅Π½ΠΈΠΌΡ ΡΠΎΠ»ΡΠΊΠΎ ΠΊ ΠΌΠ°ΠΊΡΠΎΡΠΊΠΎΠΏΠΈΡΠ΅ΡΠΊΠΈΠΌ ΡΠ΅Π»Π°ΠΌ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΠΎΠ΄ΡΠΈΠ½ΡΡΡΡΡ ΡΡΠ»ΠΎΠ²ΠΈΡ, ΡΡΠΎΠ±Ρ ΡΠΈΠ»ΠΎΠ²ΠΎΠ΅ ΠΏΠΎΠ»Π΅, ΡΠΎΠ·Π΄Π°Π²Π°Π΅ΠΌΠΎΠ΅ ΡΠ΅Π»ΠΎΠΌ, ΠΎΠ±Π»Π°Π΄Π°Π»ΠΎ ΡΠ²ΠΎΠΉΡΡΠ²Π°ΠΌΠΈ Π²Π½Π΅ΡΠ½Π΅Π³ΠΎ ΠΏΠΎΠ»Ρ. ΠΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ ΡΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΡ ΠΠΠ, ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΠ΅ ΡΠ°ΡΡΠΈΡΡ Π½Π΅ ΡΠ΄ΠΎΠ²Π»Π΅ΡΠ²ΠΎΡΡΡΡ ΡΡΠΎΠΌΡ ΡΡΠ»ΠΎΠ²ΠΈΡ ΠΈ ΠΏΠΎΡΡΠΎΠΌΡ ΠΈΡ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ ΠΎΠΏΠΈΡΡΠ²Π°ΡΡΡΡ Π·Π°ΠΊΠΎΠ½Π°ΠΌΠΈ ΠΡΡΡΠΎΠ½Π°. Π’Π°ΠΊ, Π²ΠΎΠΏΡΠ΅ΠΊΠΈ Π²ΡΠΎΡΠΎΠΌΡ Π·Π°ΠΊΠΎΠ½Ρ ΠΡΡΡΠΎΠ½Π°, ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΠ΅ ΡΠ°ΡΡΠΈΡΡ ΠΌΠΎΠ³ΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ°ΡΡΡΡ ΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ Π² ΠΎΡΡΡΡΡΡΠ²ΠΈΠ΅ Π²Π½Π΅ΡΠ½Π΅ΠΉ ΡΠΈΠ»Ρ. ΠΠ· ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΡΠ°Π±ΠΎΡΡ ΡΠ»Π΅Π΄ΡΠ΅Ρ ΡΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ Π½ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π°ΡΠΎΠΌΠ°, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠ²ΡΠ·Π°Π½Π½ΠΎΠ΅ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ°ΡΡΠΈΡ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°Π΅ΡΡΡ Π½Π΅ ΠΊΡΠ»ΠΎΠ½ΠΎΠ²ΡΠΊΠΈΠΌΠΈ ΡΠΈΠ»Π°ΠΌΠΈ, Π° ΡΠΈΠ»Π°ΠΌΠΈ ΠΈΠ½Π΅ΡΡΠΈΠΈ, Π΄Π΅ΠΉΡΡΠ²ΡΡΡΠΈΠΌΠΈ Π½Π° ΡΠ°ΡΡΠΈΡΡ Π² ΠΈΡ ΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ. ΠΠ΅ΡΠ°Π½ΠΈΠ·ΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²ΡΠ·Π°Π½Π½ΠΎΠ³ΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ Π΄Π²ΡΡ ΡΠ°ΡΡΠΈΡ, ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½Π½ΡΠΉ ΠΊΡΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΡΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ ΡΠ°ΡΡΠΈΡ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ, ΠΎΠ±ΡΡΡΠ½ΡΠ΅Ρ ΡΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠΎΠ»ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠΈΠ½ΡΠ΅Π·Π° ΡΠ΄Π΅Ρ (Π₯Π‘Π―), ΠΊΠΎΡΠΎΡΠΎΠ΅ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠ±ΡΡΡΠ½ΠΈΡΡ Π² ΡΠ°ΠΌΠΊΠ°Ρ ΠΎΠ±ΡΠ΅ΠΏΡΠΈΠ½ΡΡΠΎΠΉ ΡΠ΅ΠΎΡΠΈΠΈ ΠΈΠ·-Π·Π° Π΅Π΅ Π½Π΅ΠΏΠΎΠ»Π½ΠΎΡΡ. Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ ΠΠΈΡΠ°ΠΊΠ° Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΠΠ ΠΌΠΎΠΆΠ΅Ρ ΠΎΠΊΠ°Π·Π°ΡΡΡΡ ΠΏΠ΅ΡΠ΅Π»ΠΎΠΌΠ½ΡΠΌ ΠΌΠΎΠΌΠ΅Π½ΡΠΎΠΌ Π² ΡΠ°Π·Π²ΠΈΡΠΈΠΈ ΡΠΈΠ·ΠΈΠΊΠΈ. Π‘Π½ΡΡΠΈΠ΅ Π½Π΅ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½Π½ΡΡ Π·Π°ΠΏΡΠ΅ΡΠΎΠ² Π½Π° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΈ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΠ²Π»Π°Π΄Π΅Π½ΠΈΠ΅ ΠΠΠ Π΄Π°ΡΡ ΠΌΠΎΡΠ½ΡΠΉ ΠΈΠΌΠΏΡΠ»ΡΡ ΡΠ°Π·Π²ΠΈΡΠΈΡ Π½Π°ΡΠΊΠΈ ΠΈ ΡΠ΅ΡΠ½ΠΈΠΊΠΈ, ΠΏΡΠΈΠ²Π΅Π΄Ρ ΠΊ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π½ΠΎΠ²ΠΎΠΉ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΊΠ°ΡΡΠΈΠ½Ρ ΠΌΠΈΡΠ° ΠΈ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ Π½ΠΎΠ²ΡΡ ΡΠ΅ΡΠ½ΠΎΠ»ΠΎΠ³ΠΈΠΉ Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΠΊΠΈ, ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ°, ΡΡΠ΅Π΄ΡΡΠ² ΡΠ²ΡΠ·ΠΈ

### ΠΡΠΎΠ±Π»Π΅ΠΌΠ° ΠΠΈΡΠ°ΠΊΠ°, ΡΠ°ΡΡΡ 2. Π­Π»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ΅ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΠΊΠ°ΠΊ ΠΏΡΡΠΌΠΎΠ΅ ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ Π·Π°ΠΊΠΎΠ½ΠΎΠ² ΠΌΠ΅ΡΠ°Π½ΠΈΠΊΠΈ

It is shown that electromagnetic interaction is not a special kind of interaction between material particles. Electromagnetic field equations are obtained as a direct consequence of the laws of mechanics. They are derived from consideration of the curvilinear motion of a classical particle by inertia, without resorting to the hypothesis of the existence of electrical charges that can generate the Coulomb field. At the specified motion, both the electric and magnetic charges are induced by particle. The peculiarity of the induced charges is that they are not localized on the particle generating electromagnetic field, but are Β«smeared outΒ» in the space region in which the particle motion by inertia takes place. The presence of the induced magnetic charge means that the magnetic field generated by moving particle contains the unusual scalar (potential) component, in addition to the usual vortex one. The existence of scalar component of the magnetic field was first discovered by G. V. Nikolaev [1-3]. According to his results, taking into account the scalar component of the magnetic field allows one to remove a lot of difficulties of standard electrodynamics and to explain a number of experimental facts that can not be explained, while remaining within the rooted ideas of electrodynamics.ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ΅ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ Π½Π΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΡΠΎΠ±ΡΠΌ Π²ΠΈΠ΄ΠΎΠΌ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΠΌΠΈ ΡΠ°ΡΡΠΈΡΠ°ΠΌΠΈ. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ ΠΊΠ°ΠΊ ΠΏΡΡΠΌΠΎΠ΅ ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ Π·Π°ΠΊΠΎΠ½ΠΎΠ² ΠΌΠ΅ΡΠ°Π½ΠΈΠΊΠΈ. ΠΠ½ΠΈ Π²ΡΠ²Π΅Π΄Π΅Π½Ρ ΠΈΠ· ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½ΠΈΡ ΠΊΡΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ°ΡΡΠΈΡΡ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ, Π±Π΅Π· ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ Π³ΠΈΠΏΠΎΡΠ΅Π·Ρ ΠΎ ΡΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΠΈ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ Π·Π°ΡΡΠ΄ΠΎΠ², ΡΠΏΠΎΡΠΎΠ±Π½ΡΡ ΠΏΠΎΡΠΎΠΆΠ΄Π°ΡΡ ΠΊΡΠ»ΠΎΠ½ΠΎΠ²ΡΠΊΠΎΠ΅ ΠΏΠΎΠ»Π΅. ΠΡΠΈ ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΈΠ½Π΄ΡΡΠΈΡΡΡΡΡΡ ΠΊΠ°ΠΊ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ, ΡΠ°ΠΊ ΠΈ ΠΌΠ°Π³Π½ΠΈΡΠ½ΡΠΉ Π·Π°ΡΡΠ΄Ρ ΡΠ°ΡΡΠΈΡΡ. ΠΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΡ ΠΈΠ½Π΄ΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ Π·Π°ΡΡΠ΄ΠΎΠ² ΡΠΎΡΡΠΎΠΈΡ Π² ΡΠΎΠΌ, ΡΡΠΎ ΠΎΠ½ΠΈ Π½Π΅ Π»ΠΎΠΊΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Ρ Π½Π° ΡΠ°ΡΡΠΈΡΠ΅, ΠΏΠΎΡΠΎΠΆΠ΄Π°ΡΡΠ΅ΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ΅ ΠΏΠΎΠ»Π΅, Π° Β«ΡΠ°Π·ΠΌΠ°Π·Π°Π½ΡΒ» Π² ΡΠΎΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π°, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΏΡΠΎΠΈΡΡΠΎΠ΄ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ°ΡΡΠΈΡΡ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ. ΠΠ°Π»ΠΈΡΠΈΠ΅ ΠΈΠ½Π΄ΡΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ Π·Π°ΡΡΠ΄Π° ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ, ΡΡΠΎ ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ΅ ΠΏΠΎΠ»Π΅, ΠΏΠΎΡΠΎΠΆΠ΄Π΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΡΡΠ΅ΠΉΡΡ ΡΠ°ΡΡΠΈΡΠ΅ΠΉ, ΡΠΎΠ΄Π΅ΡΠΆΠΈΡ, ΠΏΠΎΠΌΠΈΠΌΠΎ ΠΎΠ±ΡΡΠ½ΠΎΠΉ Π²ΠΈΡΡΠ΅Π²ΠΎΠΉ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΡ, Π½Π΅ΠΎΠ±ΡΡΠ½ΡΡ ΡΠΊΠ°Π»ΡΡΠ½ΡΡ (ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΡ) ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΡ. ΠΠ° ΡΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠΊΠ°Π»ΡΡΠ½ΠΎΠΉ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΡ ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ Π²ΠΏΠ΅ΡΠ²ΡΠ΅ ΡΠΊΠ°Π·Π°Π» Π.Π. ΠΠΈΠΊΠΎΠ»Π°Π΅Π² [1-3]. Π‘ΠΎΠ³Π»Π°ΡΠ½ΠΎ Π΅Π³ΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌ, ΡΡΠ΅Ρ ΡΠΊΠ°Π»ΡΡΠ½ΠΎΠΉ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΡ ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΡΡΡΠ°Π½ΠΈΡΡ ΠΌΠ½ΠΎΠ³ΠΈΠ΅ ΡΡΡΠ΄Π½ΠΎΡΡΠΈ ΠΎΠ±ΡΠ΅ΠΏΡΠΈΠ½ΡΡΠΎΠΉ ΡΠ΅ΠΎΡΠΈΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ ΠΈ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΠΎΠ±ΡΡΡΠ½Π΅Π½ΠΈΠ΅ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ ΡΠ°ΠΊΡΠΎΠ², ΠΊΠΎΡΠΎΡΡΠ΅ Π½Π΅ ΡΠ΄Π°Π΅ΡΡΡ ΠΎΠ±ΡΡΡΠ½ΠΈΡΡ, ΠΎΡΡΠ°Π²Π°ΡΡΡ Π² ΡΠ°ΠΌΠΊΠ°Ρ ΡΠΊΠΎΡΠ΅Π½ΠΈΠ²ΡΠΈΡΡΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ

### Π€ΠΈΠ·ΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΏΡΠΈΡΠΎΠ΄Π° ΠΌΠ°ΡΡΡ ΡΠ°ΡΡΠΈΡΡ. Π Π΅Π»ΡΡΠΈΠ²ΠΈΡΡΡΠΊΠ°Ρ ΠΌΠ΅ΡΠ°Π½ΠΈΠΊΠ° Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ

The paper is devoted to solving the central problem of physics β the problem of motion. The physical nature of particle mass is revealed from the point of view of mechanics. A differential equation for the particle mass m is obtained, which determines the dependence of the mass on the motion velocity v: m=m(v). The particle is con-sidered as the simplest structural element of moving matter, capable of its own accelerated motions in the ab-sence of external fields acting on the particle. These motions are responsible for the formation of the de-pendence of mass on velocity. The equation for the particle mass follows from the condition of stable development of moving matter. The dependence m=m(v) is investigated both for a nonrelativistic particle and for a relativistic particle. According to the results obtained, the equation for the mass of relativistic particle differs significantly from the corresponding equation describing nonrelativistic particle. This is explained by the fact that the process of mass formation of particle proceeds differently when moving in Euclidean space and in 4-dimensional space-time. When relativistic particle moves by inertia, i.e. in the absence of external fields, the particle's connection with the space-time in which the motion occurs is significant. Due to this connection, the particle has a rest energy, which manifests itself in the formation of the dependence of mass on velocity. There are two types of accelerated motions of matter β forced motions (FM) and proper motions (PM) of the structural elements of matter (particles). The difference between them is that FM are performed under the action of external forces, i.e. are a consequence of the action of external forces causing acceleration, and PM, being an attribute of matter, do not have a reason for their appearance in the form of a force acting on the particle. A force acts on the particle that performs PM (we call it the force of inertia), but it is a consequence of accelerated PM, and not their cause. At present, the principle of least action (PLA) is widely used in theoretical studies. The analysis shows that the PLA has a limited range of applicability: it describes only FM, i.e. motions that occur under the action of an ex-ternal force, which is their cause. An attempt to apply the PLA to the proper motions of matter leads to motions of free particles that are incapable of anything other than a simple displacement in space with a constant velocity, i.e. to the motions of particles of dead matter. We emphasize that the real motions of particles by inertia, occurring in nature, are accelerated PM. The first to point out the motions of bodies by inertia as accelerated motions was Galileo Galilei who argued that the inertial motion is a uniform circular motion, for example, the motion of the Earth around the Sun [1,2]. Proper motions are primary, because they are an attribute of matter, and forced motions, being a consequence of the action of external fields, are secondary. Proper motions play a fundamental role in nature. They generate forces of inertia that form force fields, with the help of which matter observes the motions of its structural com-ponents, controls them, organizing and directing them to create new structures. It is these motions that are re-sponsible for the self-organization of matter, namely they generate consciousness and thinking. Thanks to its proper motions, matter generates the laws of nature, which each time bring to the amazement of the person who reveals them.Π Π°Π±ΠΎΡΠ° ΠΏΠΎΡΠ²ΡΡΠ΅Π½Π° ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ΅Π½ΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ ΡΠΈΠ·ΠΈΠΊΠΈ β ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ. Π Π°ΡΠΊΡΡΡΠ° ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΏΡΠΈΡΠΎΠ΄Π° ΠΌΠ°ΡΡΡ ΡΠ°ΡΡΠΈΡΡ Ρ ΡΠΎΡΠΊΠΈ Π·ΡΠ΅Π½ΠΈΡ ΠΌΠ΅ΡΠ°Π½ΠΈΠΊΠΈ. ΠΠΎΠ»ΡΡΠ΅Π½ΠΎ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π»Ρ ΠΌΠ°ΡΡΡ ΡΠ°ΡΡΠΈΡΡ m, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΠ΅Π΅ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΌΠ°ΡΡΡ ΠΎΡ ΡΠΊΠΎΡΠΎΡΡΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ v: m=m(v). Π§Π°ΡΡΠΈΡΠ° ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΡΡΡ ΠΊΠ°ΠΊ ΠΏΡΠΎΡΡΠ΅ΠΉΡΠΈΠΉ ΡΡΡΡΠΊΡΡΡΠ½ΡΠΉ ΡΠ»Π΅ΠΌΠ΅Π½Ρ Π΄Π²ΠΈΠΆΡΡΠ΅ΠΉΡΡ ΠΌΠ°ΡΠ΅ΡΠΈΠΈ, ΡΠΏΠΎΡΠΎΠ±Π½ΡΠΉ ΠΊ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΠΌ ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡΠΌ Π² ΠΎΡΡΡΡΡΡΠ²ΠΈΠ΅ Π΄Π΅ΠΉΡΡΠ²ΡΡΡΠΈΡ Π½Π° ΡΠ°ΡΡΠΈΡΡ Π²Π½Π΅ΡΠ½ΠΈΡ ΠΏΠΎΠ»Π΅ΠΉ. Π£ΠΊΠ°Π·Π°Π½Π½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½Ρ Π·Π° ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΌΠ°ΡΡΡ ΠΎΡ ΡΠΊΠΎΡΠΎΡΡΠΈ. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π»Ρ ΠΌΠ°ΡΡΡ ΡΠ°ΡΡΠΈΡΡ ΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΈΠ· ΡΡΠ»ΠΎΠ²ΠΈΡ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π·Π²ΠΈΡΠΈΡ Π΄Π²ΠΈΠΆΡΡΠ΅ΠΉΡΡ ΠΌΠ°ΡΠ΅ΡΠΈΠΈ. ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ m=m(v) ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π° ΠΊΠ°ΠΊ Π΄Π»Ρ Π½Π΅ΡΠ΅Π»ΡΡΠΈΠ²ΠΈΡΡΡΠΊΠΎΠΉ ΡΠ°ΡΡΠΈΡΡ, ΡΠ°ΠΊ ΠΈ Π΄Π»Ρ ΡΠ΅Π»ΡΡΠΈΠ²ΠΈΡΡΡΠΊΠΎΠΉ. Π‘ΠΎΠ³Π»Π°ΡΠ½ΠΎ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠΌ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌ, ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π»Ρ ΠΌΠ°ΡΡΡ ΡΠ΅Π»ΡΡΠΈΠ²ΠΈΡΡΡΠΊΠΎΠΉ ΡΠ°ΡΡΠΈΡΡ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΠΎΡΠ»ΠΈΡΠ°Π΅ΡΡΡ ΠΎΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅Π³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ, ΠΎΠΏΠΈΡΡΠ²Π°ΡΡΠ΅Π³ΠΎ Π½Π΅ΡΠ΅Π»ΡΡΠΈΠ²ΠΈΡΡΡΠΊΡΡ ΡΠ°ΡΡΠΈΡΡ. Π­ΡΠΎ ΠΎΠ±ΡΡΡΠ½ΡΠ΅ΡΡΡ ΡΠ΅ΠΌ, ΡΡΠΎ ΠΏΡΠΎΡΠ΅ΡΡ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΌΠ°ΡΡΡ ΡΠ°ΡΡΠΈΡΡ ΠΏΡΠΎΡΠ΅ΠΊΠ°Π΅Ρ ΠΏΠΎ-ΡΠ°Π·Π½ΠΎΠΌΡ ΠΏΡΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Π² Π΅Π²ΠΊΠ»ΠΈΠ΄ΠΎΠ²ΠΎΠΌ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅ ΠΈ Π² 4-ΠΌΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅-Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. ΠΡΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΡΠ΅Π»ΡΡΠΈΠ²ΠΈΡΡΡΠΊΠΎΠΉ ΡΠ°ΡΡΠΈΡΡ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ, Ρ.Π΅. Π² ΠΎΡΡΡΡΡΡΠ²ΠΈΠ΅ Π²Π½Π΅ΡΠ½ΠΈΡ ΠΏΠΎΠ»Π΅ΠΉ, ΠΎΠΊΠ°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΡΠ²ΡΠ·Ρ ΡΠ°ΡΡΠΈΡΡ Ρ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²ΠΎΠΌ-Π²ΡΠ΅ΠΌΠ΅Π½Π΅ΠΌ, Π² ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΏΡΠΎΠΈΡΡΠΎΠ΄ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠΠ»Π°Π³ΠΎΠ΄Π°ΡΡ ΡΡΠΎΠΉ ΡΠ²ΡΠ·ΠΈ ΡΠ°ΡΡΠΈΡΠ° ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ ΡΠ½Π΅ΡΠ³ΠΈΠ΅ΠΉ ΠΏΠΎΠΊΠΎΡ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΈ ΠΏΡΠΎΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠΈ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΌΠ°ΡΡΡ ΠΎΡ ΡΠΊΠΎΡΠΎΡΡΠΈ. Π‘ΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ Π΄Π²Π° ΡΠΈΠΏΠ° ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ ΠΌΠ°ΡΠ΅ΡΠΈΠΈ β Π²ΡΠ½ΡΠΆΠ΄Π΅Π½Π½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ (ΠΠ) ΠΈ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ (Π‘Π) ΡΡΡΡΠΊΡΡΡΠ½ΡΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΠΌΠ°ΡΠ΅ΡΠΈΠΈ (ΡΠ°ΡΡΠΈΡ). Π Π°Π·Π»ΠΈΡΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ Π½ΠΈΠΌΠΈ ΡΠΎΡΡΠΎΠΈΡ Π² ΡΠΎΠΌ, ΡΡΠΎ ΠΠ ΡΠΎΠ²Π΅ΡΡΠ°ΡΡΡΡ ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ Π²Π½Π΅ΡΠ½ΠΈΡ ΡΠΈΠ», Ρ.Π΅. ΡΠ²Π»ΡΡΡΡΡ ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ΠΌ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Π²Π½Π΅ΡΠ½ΠΈΡ ΡΠΈΠ», Π²ΡΠ·ΡΠ²Π°ΡΡΠΈΡ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅, Π° Π‘Π, Π±ΡΠ΄ΡΡΠΈ Π°ΡΡΠΈΠ±ΡΡΠΎΠΌ ΠΌΠ°ΡΠ΅ΡΠΈΠΈ, Π½Π΅ ΠΈΠΌΠ΅ΡΡ ΠΏΡΠΈΡΠΈΠ½Ρ ΡΠ²ΠΎΠ΅Π³ΠΎ ΠΏΠΎΡΠ²Π»Π΅Π½ΠΈΡ Π² Π²ΠΈΠ΄Π΅ ΡΠΈΠ»Ρ, Π΄Π΅ΠΉΡΡΠ²ΡΡΡΠ΅ΠΉ Π½Π° ΡΠ°ΡΡΠΈΡΡ. ΠΠ° ΡΠ°ΡΡΠΈΡΡ, ΡΠΎΠ²Π΅ΡΡΠ°ΡΡΡΡ Π‘Π, Π΄Π΅ΠΉΡΡΠ²ΡΠ΅Ρ ΡΠΈΠ»Π° (ΠΌΡ Π½Π°Π·ΡΠ²Π°Π΅ΠΌ Π΅Π΅ ΡΠΈΠ»ΠΎΠΉ ΠΈΠ½Π΅ΡΡΠΈΠΈ), Π½ΠΎ ΠΎΠ½Π° ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ΠΌ ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΡ Π‘Π, Π° Π½Π΅ ΠΈΡ ΠΏΡΠΈΡΠΈΠ½ΠΎΠΉ. Π Π½Π°ΡΡΠΎΡΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ Π² ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡΡ ΡΠΈΡΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ ΠΏΡΠΈΠ½ΡΠΈΠΏ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π³ΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ (ΠΠΠ). ΠΠ½Π°Π»ΠΈΠ· ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ, ΡΡΠΎ ΠΠΠ ΠΈΠΌΠ΅Π΅Ρ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΡΡ ΠΎΠ±Π»Π°ΡΡΡ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΠΌΠΎΡΡΠΈ: ΠΎΠ½ ΠΎΠΏΠΈΡΡΠ²Π°Π΅Ρ Π»ΠΈΡΡ ΠΠ, Ρ.Π΅. Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΡΠΎΠΈΡΡΠΎΠ΄ΡΡ ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ Π²Π½Π΅ΡΠ½Π΅ΠΉ ΡΠΈΠ»Ρ, ΡΠ²Π»ΡΡΡΠ΅ΠΉΡΡ ΠΈΡ ΠΏΡΠΈΡΠΈΠ½ΠΎΠΉ. ΠΠΎΠΏΡΡΠΊΠ° ΠΏΡΠΈΠΌΠ΅Π½ΠΈΡΡ ΠΠΠ ΠΊ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡΠΌ ΠΌΠ°ΡΠ΅ΡΠΈΠΈ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡΠΌ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΡ ΡΠ°ΡΡΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ Π½Π΅ ΡΠΏΠΎΡΠΎΠ±Π½Ρ Π½ΠΈ Π½Π° ΡΡΠΎ ΠΈΠ½ΠΎΠ΅, ΠΊΡΠΎΠΌΠ΅ ΠΏΡΠΎΡΡΠΎΠ³ΠΎ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π² ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅ Ρ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ, Ρ.Π΅. ΠΊ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡΠΌ ΡΠ°ΡΡΠΈΡ ΠΌΠ΅ΡΡΠ²ΠΎΠΉ ΠΌΠ°ΡΠ΅ΡΠΈΠΈ. ΠΠΎΠ΄ΡΠ΅ΡΠΊΠ½Π΅ΠΌ, ΡΡΠΎ ΡΠ΅Π°Π»ΡΠ½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ°ΡΡΠΈΡ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ, ΠΏΡΠΎΠΈΡΡΠΎΠ΄ΡΡΠΈΠ΅ Π² ΠΏΡΠΈΡΠΎΠ΄Π΅, ΡΠ²Π»ΡΡΡΡΡ ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΠΌΠΈ Π‘Π. ΠΠ° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π» ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ, ΠΊΠ°ΠΊ Π½Π° ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, Π²ΠΏΠ΅ΡΠ²ΡΠ΅ ΡΠΊΠ°Π·Π°Π» ΠΠ°Π»ΠΈΠ»Π΅ΠΎ ΠΠ°Π»ΠΈΠ»Π΅ΠΉ, ΠΊΠΎΡΠΎΡΡΠΉ ΡΡΠ²Π΅ΡΠΆΠ΄Π°Π», ΡΡΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ ΠΊΡΡΠ³ΠΎΠ²ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΠ΅ΠΌΠ»ΠΈ Π²ΠΎΠΊΡΡΠ³ Π‘ΠΎΠ»Π½ΡΠ° [1,2]. Π‘ΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΠ²ΠΈΡΠ½Ρ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠ²Π»ΡΡΡΡΡ Π°ΡΡΠΈΠ±ΡΡΠΎΠΌ ΠΌΠ°ΡΠ΅ΡΠΈΠΈ, Π° Π²ΡΠ½ΡΠΆΠ΄Π΅Π½Π½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, Π±ΡΠ΄ΡΡΠΈ ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ΠΌ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Π²Π½Π΅ΡΠ½ΠΈΡ ΠΏΠΎΠ»Π΅ΠΉ, Π²ΡΠΎΡΠΈΡΠ½Ρ. Π‘ΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΈΠ³ΡΠ°ΡΡ Π² ΠΏΡΠΈΡΠΎΠ΄Π΅ ΡΡΠ½Π΄Π°ΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ ΡΠΎΠ»Ρ. ΠΠ½ΠΈ ΠΏΠΎΡΠΎΠΆΠ΄Π°ΡΡ ΡΠΈΠ»Ρ ΠΈΠ½Π΅ΡΡΠΈΠΈ, ΠΎΠ±ΡΠ°Π·ΡΡΡΠΈΠ΅ ΡΠΈΠ»ΠΎΠ²ΡΠ΅ ΠΏΠΎΠ»Ρ, Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΊΠΎΡΠΎΡΡΡ ΠΌΠ°ΡΠ΅ΡΠΈΡ Π½Π°Π±Π»ΡΠ΄Π°Π΅Ρ Π·Π° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡΠΌΠΈ ΡΠ²ΠΎΠΈΡ ΡΡΡΡΠΊΡΡΡΠ½ΡΡ ΡΠΎΡΡΠ°Π²Π»ΡΡΡΠΈΡ, ΡΠΏΡΠ°Π²Π»ΡΠ΅Ρ ΠΈΠΌΠΈ, ΠΎΡΠ³Π°Π½ΠΈΠ·ΡΡ ΠΈ Π½Π°ΠΏΡΠ°Π²Π»ΡΡ ΠΈΡ Π½Π° ΡΠΎΠ·Π΄Π°Π½ΠΈΠ΅ Π½ΠΎΠ²ΡΡ ΡΡΡΡΠΊΡΡΡ. ΠΠΌΠ΅Π½Π½ΠΎ ΡΡΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½Ρ Π·Π° ΡΠ°ΠΌΠΎΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΡ ΠΌΠ°ΡΠ΅ΡΠΈΠΈ, ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΎΠ½ΠΈ ΠΏΠΎΡΠΎΠΆΠ΄Π°ΡΡ ΡΠΎΠ·Π½Π°Π½ΠΈΠ΅ ΠΈ ΠΌΡΡΠ»Π΅Π½ΠΈΠ΅. ΠΠ»Π°Π³ΠΎΠ΄Π°ΡΡ ΠΈΠΌΠ΅Π½Π½ΠΎ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡΠΌ ΠΌΠ°ΡΠ΅ΡΠΈΡ ΠΏΠΎΡΠΎΠΆΠ΄Π°Π΅Ρ Π·Π°ΠΊΠΎΠ½Ρ ΠΏΡΠΈΡΠΎΠ΄Ρ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ°Π· ΠΏΡΠΈΠ²ΠΎΠ΄ΡΡ Π² ΠΈΠ·ΡΠΌΠ»Π΅Π½ΠΈΠ΅ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ°, ΠΎΡΠΊΡΡΠ²Π°ΡΡΠ΅Π³ΠΎ ΠΈΡ. ΠΡΠ΅Π½ΠΈΠ²Π°Ρ ΠΌΠ΅ΡΡΠΎ, ΠΊΠ°ΠΊΠΎΠ΅ Π·Π°Π½ΠΈΠΌΠ°Π΅Ρ Π² ΠΏΡΠΈΡΠΎΠ΄Π΅ ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΠΈΠ· ΡΠΏΠΎΠΌΡΠ½ΡΡΡΡ Π²ΡΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ, ΠΌΠΎΠΆΠ½ΠΎ ΡΡΠ²Π΅ΡΠΆΠ΄Π°ΡΡ, ΡΡΠΎ Π²ΡΠ½ΡΠΆΠ΄Π΅Π½Π½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ β ΡΡΠΎ ΠΌΠ΅Π»ΠΊΠ°Ρ ΡΡΠ±Ρ Π½Π° ΠΏΠΎΠ²Π΅ΡΡΠ½ΠΎΡΡΠΈ ΠΎΠΊΠ΅Π°Π½Π°, ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΠΎΡΠΎΠΆΠ΄Π°Π΅ΡΡΡ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΠΌΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡΠΌΠΈ ΠΌΠ°ΡΠ΅ΡΠΈΠΈ. ΠΡΠΈΠ·ΠΈΡ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΡΠΈΠ·ΠΈΠΊΠΈ ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½ Π΅Π΅ ΠΏΡΠΈΠ½ΡΠΈΠΏΠΈΠ°Π»ΡΠ½ΠΎΠΉ Π½Π΅ΠΏΠΎΠ»Π½ΠΎΡΠΎΠΉ, Π²ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠΈΠ·ΠΈΠΊΠ° Π·Π°Π½ΠΈΠΌΠ°Π΅ΡΡΡ ΠΈΠ·ΡΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΡΠ±ΠΈ Π½Π° Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΏΠΎΠ²Π΅ΡΡΠ½ΠΎΡΡΠΈ, Π΄Π°ΠΆΠ΅ Π½Π΅ ΠΏΠΎΠ΄ΠΎΠ·ΡΠ΅Π²Π°Ρ, ΡΡΠΎ ΠΏΠΎΠ΄ ΠΏΠΎΠ²Π΅ΡΡΠ½ΠΎΡΡΡΡ Π»Π΅ΠΆΠΈΡ ΠΎΠ³ΡΠΎΠΌΠ½ΡΠΉ ΠΌΠΈΡ, ΠΏΠΎΠ»Π½ΡΠΉ ΡΠ°ΠΉΠ½ ΠΈ Π·Π°Π³Π°Π΄ΠΎΠΊ, ΠΊΠΎΡΠΎΡΡΠΉ ΡΠΏΡΠ°Π²Π»ΡΠ΅ΡΡΡ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΠΌΠΈ ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΠΌΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡΠΌΠΈ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ

### ΠΡΠΎΠ±Π»Π΅ΠΌΠ° ΠΠΈΡΠ°ΠΊΠ°, ΡΠ°ΡΡΡ 3. Π­Π»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ ΠΈ ΠΊΡΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ

As is evident from the analysis of the Dirac problem, difficulties of electrodynamics are rooted in the incompleteness of classical mechanics. The elimination of incompleteness of mechanics by including curvilinear motions of classical particles by inertia in the Newtonian scheme of mechanics leads to the need to revise some of the fundamental propositions of theory. As it follows from the condition for stability of accelerated motions of particles by inertia in the transition from one inertial reference frame (IRF) to another, the mass of classical particle is not constant. The mass depends on the particle velocity and changes in passing from one IRF to another. This means that the IRF moving relative to each other are not physically equivalent. The cause of nonequivalence of the IRF is a special physical medium generated by the particle moving by inertia with acceleration. The energy of the medium is distributed differently between rotational and translational degrees of freedom in the IRF moving relative to each other. Nonequivalence of IRF can be registered by experiment. If the system of two particles is in the state of curvilinear motion by inertia, its reduced mass depends on the relative velocity of particles and on the velocity of the center of mass. There are some additional fields , apart from the fields of inertial forces ( ), that act on particles of two-particle system being in the state of curvilinear motion by inertia. The equations of the field generated by the system of two particles moving with acceleration by inertia are obtained, which are similar to Maxwell's equations for electromagnetic field produced by electrically charged particles. On the basis of this analogy, it is natural to regard the fields and as components of a single electromagnetic field generated by particles moving with acceleration by inertia and to call them the electric and magnetic fields. Classical particles moving along curvilinear paths by inertia generate induced electric and magnetic charges. The induced electric charge is significantly different from the electric charge, which is considered in conventional formulation of electrodynamics as an immutable intrinsic property of classical particle inherent in it by the very nature of things. A qualitatively new model of atom is built in which the bound state of classical particles is formed not by Coulomb forces but by inertia forces acting on particles in their accelerated motion by inertia. In the model, the splitting of bound state of two particles is due not to the leakage of one of the particles through the Coulomb potential barrier formed by another particle but to the redistribution of energy of the system between its rotational and translational degrees of freedom and can therefore occur without energy loss. The mechanism of formation of bound state of two particles, caused by the curvilinear motion of parti-cles by inertia, explains the phenomenon of cold nuclear fusion (CNF), which can not be explained within the framework of standard theory because of its incompleteness. This paper is only a milestone in the research on the Dirac problem. The research, theoretical and exper-imental, is just beginning. It will lead to radical changes in all fields of physical science, giving a powerful impe-tus to the development of our civilization [1].ΠΠ°ΠΊ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ Π°Π½Π°Π»ΠΈΠ· ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ ΠΠΈΡΠ°ΠΊΠ°, ΡΡΡΠ΄Π½ΠΎΡΡΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ ΠΊΠΎΡΠ΅Π½ΡΡΡΡ Π² Π½Π΅ΠΏΠΎΠ»Π½ΠΎΡΠ΅ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠ΅ΡΠ°Π½ΠΈΠΊΠΈ. Π£ΡΡΡΠ°Π½Π΅Π½ΠΈΠ΅ Π½Π΅ΠΏΠΎΠ»Π½ΠΎΡΡ ΠΌΠ΅ΡΠ°Π½ΠΈΠΊΠΈ ΠΏΡΡΠ΅ΠΌ Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ Π² ΠΡΡΡΠΎΠ½ΠΎΠ²ΡΠΊΡΡ ΡΡΠ΅ΠΌΡ ΠΌΠ΅ΡΠ°Π½ΠΈΠΊΠΈ ΠΊΡΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ°ΡΡΠΈΡ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ Π²ΡΠ·ΡΠ²Π°Π΅Ρ Π½Π΅ΠΎΠ±ΡΠΎΠ΄ΠΈΠΌΠΎΡΡΡ ΠΏΠ΅ΡΠ΅ΡΠΌΠΎΡΡΠ° Π½Π΅ΠΊΠΎΡΠΎΡΡΡ ΠΏΡΠΈΠ½ΡΠΈΠΏΠΈΠ°Π»ΡΠ½ΡΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ ΡΠ΅ΠΎΡΠΈΠΈ. ΠΠ· ΡΡΠ»ΠΎΠ²ΠΈΡ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΡΡΠΈ ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ ΡΠ°ΡΡΠΈΡ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ ΠΏΡΠΈ ΠΏΠ΅ΡΠ΅ΡΠΎΠ΄Π΅ ΠΈΠ· ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ½Π΅ΡΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΡΡΡΠ΅ΡΠ° (ΠΠ‘Π) Π² Π΄ΡΡΠ³ΡΡ ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ ΠΌΠ°ΡΡΠ° ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ°ΡΡΠΈΡΡ Π½Π΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½ΠΎΠΉ. ΠΠ΅Π»ΠΈΡΠΈΠ½Π° ΠΌΠ°ΡΡΡ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ ΡΠΊΠΎΡΠΎΡΡΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ°ΡΡΠΈΡΡ, ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΡ ΠΏΡΠΈ ΠΏΠ΅ΡΠ΅ΡΠΎΠ΄Π΅ ΠΈΠ· ΠΎΠ΄Π½ΠΎΠΉ ΠΠ‘Π Π² Π΄ΡΡΠ³ΡΡ. Π­ΡΠΎ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π½Π΅ΡΠ°Π²Π½ΠΎΠΏΡΠ°Π²ΠΈΠ΅ ΠΠ‘Π, Π΄Π²ΠΈΠΆΡΡΠΈΡΡΡ Π΄ΡΡΠ³ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΄ΡΡΠ³Π°. ΠΡΠΈΡΠΈΠ½ΠΎΠΉ Π½Π΅ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΡΡΠΈ ΠΠ‘Π ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΡΠΎΠ±Π°Ρ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΠ΅Π΄Π°, ΠΏΠΎΡΠΎΠΆΠ΄Π°Π΅ΠΌΠ°Ρ ΡΠ°ΡΡΠΈΡΠ΅ΠΉ, Π΄Π²ΠΈΠΆΡΡΠ΅ΠΉΡΡ ΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ. Π­Π½Π΅ΡΠ³ΠΈΡ ΡΡΠΎΠΉ ΡΡΠ΅Π΄Ρ ΠΏΠΎ-ΡΠ°Π·Π½ΠΎΠΌΡ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΌΠ΅ΠΆΠ΄Ρ Π²ΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌΠΈ ΠΈ ΠΏΠΎΡΡΡΠΏΠ°ΡΠ΅Π»ΡΠ½ΡΠΌΠΈ ΡΡΠ΅ΠΏΠ΅Π½ΡΠΌΠΈ ΡΠ²ΠΎΠ±ΠΎΠ΄Ρ Π² Π΄Π²ΠΈΠΆΡΡΠΈΡΡΡ Π΄ΡΡΠ³ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΄ΡΡΠ³Π° ΠΠ‘Π. ΠΠ΅ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΡΡΡ ΠΠ‘Π ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ Π·Π°ΡΠ΅Π³ΠΈΡΡΡΠΈΡΠΎΠ²Π°Π½Π° Π½Π° ΠΎΠΏΡΡΠ΅. Π‘ΠΈΡΡΠ΅ΠΌΠ° Π΄Π²ΡΡ ΡΠ°ΡΡΠΈΡ, Π½Π°ΡΠΎΠ΄ΡΡΠ°ΡΡΡ Π² ΡΠΎΡΡΠΎΡΠ½ΠΈΠΈ ΠΊΡΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ, ΡΠ°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΠ΅ΡΡΡ ΡΠ΅ΠΌ, ΡΡΠΎ Π΅Π΅ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½Π°Ρ ΠΌΠ°ΡΡΠ° Π·Π°Π²ΠΈΡΠΈΡ ΠΊΠ°ΠΊ ΠΎΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ°ΡΡΠΈΡ, ΡΠ°ΠΊ ΠΈ ΠΎΡ ΡΠΊΠΎΡΠΎΡΡΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π½ΡΡΠ° ΠΌΠ°ΡΡ. ΠΠ° ΡΠ°ΡΡΠΈΡΡ Π΄Π²ΡΡΡΠ°ΡΡΠΈΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ, ΡΠΎΠ²Π΅ΡΡΠ°ΡΡΠ΅ΠΉ ΠΊΡΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ, Π΄Π΅ΠΉΡΡΠ²ΡΡΡ, ΠΏΠΎΠΌΠΈΠΌΠΎ ΠΏΠΎΠ»Π΅ΠΉ ΡΠΈΠ» ΠΈΠ½Π΅ΡΡΠΈΠΈ Fi, Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΏΠΎΠ»Ρ Hi (i=1,2). ΠΠΎΠ»ΡΡΠ΅Π½Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΠΎΠ»Ρ, ΠΏΠΎΡΠΎΠΆΠ΄Π°Π΅ΠΌΠΎΠ³ΠΎ ΡΠΈΡΡΠ΅ΠΌΠΎΠΉ Π΄Π²ΡΡ ΡΠ°ΡΡΠΈΡ, Π΄Π²ΠΈΠΆΡΡΠΈΡΡΡ ΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ Π°Π½Π°Π»ΠΎΠ³ΠΈΡΠ½Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΠΌ ΠΠ°ΠΊΡΠ²Π΅Π»Π»Π° Π΄Π»Ρ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ, ΠΏΠΎΡΠΎΠΆΠ΄Π°Π΅ΠΌΠΎΠ³ΠΎ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈ Π·Π°ΡΡΠΆΠ΅Π½Π½ΡΠΌΠΈ ΡΠ°ΡΡΠΈΡΠ°ΠΌΠΈ. ΠΠ° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΡΡΠΎΠΉ Π°Π½Π°Π»ΠΎΠ³ΠΈΠΈ ΠΏΠΎΠ»Ρ Fi ΠΈ Hi Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡ ΠΊΠ°ΠΊ ΡΠΎΡΡΠ°Π²Π»ΡΡΡΠΈΠ΅ Π΅Π΄ΠΈΠ½ΠΎΠ³ΠΎ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ, ΡΠΎΠ·Π΄Π°Π²Π°Π΅ΠΌΠΎΠ³ΠΎ ΡΠ°ΡΡΠΈΡΠ°ΠΌΠΈ, Π΄Π²ΠΈΠΆΡΡΠΈΠΌΠΈΡΡ ΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ, ΠΈ Π½Π°Π·ΡΠ²Π°ΡΡ ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΈ ΠΌΠ°Π³Π½ΠΈΡΠ½ΡΠΌ ΠΏΠΎΠ»ΡΠΌΠΈ. ΠΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ°ΡΡΠΈΡΡ, Π΄Π²ΠΈΠΆΡΡΠΈΠ΅ΡΡ ΠΏΠΎ ΠΊΡΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΠΈ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ, ΠΏΠΎΡΠΎΠΆΠ΄Π°ΡΡ ΠΈΠ½Π΄ΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈ ΠΌΠ°Π³Π½ΠΈΡΠ½ΡΠ΅ Π·Π°ΡΡΠ΄Ρ. ΠΠ½Π΄ΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ Π·Π°ΡΡΠ΄ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΠΎΡΠ»ΠΈΡΠ°Π΅ΡΡΡ ΠΎΡ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π·Π°ΡΡΠ΄Π°, ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌΠΎΠ³ΠΎ Π² ΠΎΠ±ΡΠ΅ΠΏΡΠΈΠ½ΡΡΠΎΠΉ ΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²ΠΊΠ΅ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ ΠΊΠ°ΠΊ Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½ΠΎΠ΅ Π²Π½ΡΡΡΠ΅Π½Π½Π΅Π΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ°ΡΡΠΈΡΡ, ΠΏΡΠΈΡΡΡΠ΅Π΅ Π΅ΠΉ ΠΏΠΎ ΡΠ°ΠΌΠΎΠΉ ΠΏΡΠΈΡΠΎΠ΄Π΅ Π²Π΅ΡΠ΅ΠΉ. ΠΠΎΡΡΡΠΎΠ΅Π½Π° ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ Π½ΠΎΠ²Π°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ Π°ΡΠΎΠΌΠ°, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠ²ΡΠ·Π°Π½Π½ΠΎΠ΅ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ°ΡΡΠΈΡ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°Π΅ΡΡΡ Π½Π΅ ΠΊΡΠ»ΠΎΠ½ΠΎΠ²ΡΠΊΠΈΠΌΠΈ ΡΠΈΠ»Π°ΠΌΠΈ, Π° ΡΠΈΠ»Π°ΠΌΠΈ ΠΈΠ½Π΅ΡΡΠΈΠΈ, Π΄Π΅ΠΉΡΡΠ²ΡΡΡΠΈΠΌΠΈ Π½Π° ΡΠ°ΡΡΠΈΡΡ Π² ΠΈΡ ΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ. Π ΡΡΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡΠ°ΡΡΠ΅ΠΏΠ»Π΅Π½ΠΈΠ΅ ΡΠ²ΡΠ·Π°Π½Π½ΠΎΠ³ΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ Π΄Π²ΡΡ ΡΠ°ΡΡΠΈΡ ΠΏΡΠΎΠΈΡΡΠΎΠ΄ΠΈΡ Π½Π΅ Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΠΏΡΠΎΡΠ°ΡΠΈΠ²Π°Π½ΠΈΡ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· ΡΠ°ΡΡΠΈΡ ΡΠΊΠ²ΠΎΠ·Ρ ΠΊΡΠ»ΠΎΠ½ΠΎΠ²ΡΠΊΠΈΠΉ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΠΉ Π±Π°ΡΡΠ΅Ρ, ΠΎΠ±ΡΠ°Π·ΡΠ΅ΠΌΡΠΉ Π΄ΡΡΠ³ΠΎΠΉ ΡΠ°ΡΡΠΈΡΠ΅ΠΉ, Π° ΠΏΡΡΠ΅ΠΌ ΠΏΠ΅ΡΠ΅ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΡΠΈΡΡΠ΅ΠΌΡ ΠΌΠ΅ΠΆΠ΄Ρ Π΅Π΅ Π²ΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌΠΈ ΠΈ ΠΏΠΎΡΡΡΠΏΠ°ΡΠ΅Π»ΡΠ½ΡΠΌΠΈ ΡΡΠ΅ΠΏΠ΅Π½ΡΠΌΠΈ ΡΠ²ΠΎΠ±ΠΎΠ΄Ρ ΠΈ ΠΏΠΎΡΡΠΎΠΌΡ ΠΌΠΎΠΆΠ΅Ρ ΠΏΡΠΎΠΈΡΡΠΎΠ΄ΠΈΡΡ Π±Π΅Π· ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ Π·Π°ΡΡΠ°Ρ. ΠΠ΅ΡΠ°Π½ΠΈΠ·ΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²ΡΠ·Π°Π½Π½ΠΎΠ³ΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ Π΄Π²ΡΡ ΡΠ°ΡΡΠΈΡ, ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½Π½ΡΠΉ ΠΊΡΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΡΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ ΡΠ°ΡΡΠΈΡ ΠΏΠΎ ΠΈΠ½Π΅ΡΡΠΈΠΈ, ΠΎΠ±ΡΡΡΠ½ΡΠ΅Ρ ΡΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠΎΠ»ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠΈΠ½ΡΠ΅Π·Π° ΡΠ΄Π΅Ρ (Π₯Π‘Π―), ΠΊΠΎΡΠΎΡΠΎΠ΅ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠ±ΡΡΡΠ½ΠΈΡΡ Π² ΡΠ°ΠΌΠΊΠ°Ρ ΠΎΠ±ΡΠ΅ΠΏΡΠΈΠ½ΡΡΠΎΠΉ ΡΠ΅ΠΎΡΠΈΠΈ ΠΈΠ·-Π·Π° Π΅Π΅ Π½Π΅ΠΏΠΎΠ»Π½ΠΎΡΡ. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎ ΠΏΡΠΎΠ±Π»Π΅ΠΌΠ΅ ΠΠΈΡΠ°ΠΊΠ°, Π²Π²ΠΈΠ΄Ρ Π΅Π΅ Π°ΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΠΈ, Π½Π΅ ΠΌΠΎΠ³ΡΡ Π·Π°ΠΊΠΎΠ½ΡΠΈΡΡΡΡ Π½Π° Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΠ΅. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ, ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠ΅, ΡΠΎΠ»ΡΠΊΠΎ Π½Π°ΡΠΈΠ½Π°ΡΡΡΡ. ΠΠ½ΠΈ ΠΏΡΠΈΠ²Π΅Π΄ΡΡ ΠΊ ΡΠ°Π΄ΠΈΠΊΠ°Π»ΡΠ½ΡΠΌ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡΠΌ Π²ΠΎ Π²ΡΠ΅Ρ ΠΎΠ±Π»Π°ΡΡΡΡ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π½Π°ΡΠΊΠΈ, Π΄Π°Π² ΠΌΠΎΡΠ½ΡΠΉ ΠΈΠΌΠΏΡΠ»ΡΡ ΡΠ°Π·Π²ΠΈΡΠΈΡ Π½Π°ΡΠ΅ΠΉ ΡΠΈΠ²ΠΈΠ»ΠΈΠ·Π°ΡΠΈΠΈ

### ΠΠ±Π»Π°ΡΡΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ ΡΠ΅ΠΎΡΠΈΠΈ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π° ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΎΡΠ΅ΡΠ½ΠΎΠΉ ΡΠ°ΡΡΠΈΡΠ΅ΠΉ. Π Π½Π΅ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΡΡΠΈ ΠΈΠ½Π΅ΡΡΠΈΠ°Π»ΡΠ½ΡΡ ΡΠΈΡΡΠ΅ΠΌ ΠΎΡΡΡΠ΅ΡΠ°

A detailed analysis of the nonequivalence problem of inertial frames of reference (IFR) moving relative to each other in respect to both classical and quantum physical systems is given. The essence of the problem is that the times which enter into the equations of motion in various IFR can differ from those which enter into Lorentz transformations connecting space and time coordinates of the reference frames. The above mentioned distinction disappears only in the case of the most simple physical system β the classical point particle interacting with a force field, and for this reason the field of applicability of the special theory of relativity is reduced to classical one-partial system. It is shown that global time cannot be constructed of the local times which are formed from global time when going over from one reference frame to another. Strict consideration of the nonequivalence problem of IFR is given in the case of quantum particle. The results obtained as to the nonequivalence problem of IFR can be checked in experiments on emission of photons by electronic beam in external electromagnetic field. The relationship between global times in different IFR moving relative to each other in the case of classical point particle is derived. The phenomenon of local dynamic inhomogeneity of time, arising when classical particle moves in a force field, is discussed. It is noted that in relativistic mechanics the force is not only the cause of acceleration of particle relative to IFR, but also the cause of change of the course of time along the particle trajectory. Therein lies the physical content of the dynamic principle underlying relativistic mechanics. According to the received results, within the framework of one-partial approach the Lorentz reduction of length follows from the Lorentz transformations merely under the assumption that classical point particle is capable of moving on trajectory at superluminal speed.ΠΠ°Π½ Π΄Π΅ΡΠ°Π»ΡΠ½ΡΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ Π½Π΅ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΡΡΠΈ Π΄Π²ΠΈΠΆΡΡΠΈΡΡΡ Π΄ΡΡΠ³ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΄ΡΡΠ³Π° ΠΈΠ½Π΅ΡΡΠΈΠ°Π»ΡΠ½ΡΡ ΡΠΈΡΡΠ΅ΠΌ ΠΎΡΡΡΠ΅ΡΠ° (ΠΠ‘Π) Π² ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ ΠΊΠ°ΠΊ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ, ΡΠ°ΠΊ ΠΈ ΠΊΠ²Π°Π½ΡΠΎΠ²ΡΡ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠΈΡΡΠ΅ΠΌ. Π‘ΡΡΡ ΡΡΠΎΠΉ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ ΡΠΎΡΡΠΎΠΈΡ Π² ΡΠΎΠΌ, ΡΡΠΎ Π²ΡΠ΅ΠΌΠ΅Π½Π°, Π²ΡΠΎΠ΄ΡΡΠΈΠ΅ Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π² ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΠΠ‘Π, ΠΌΠΎΠ³ΡΡ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΠΎΡΠ»ΠΈΡΠ°ΡΡΡΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½, ΠΊΠΎΡΠΎΡΡΠ΅ Π²ΡΠΎΠ΄ΡΡ Π² ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΠΠΎΡΠ΅Π½ΡΠ°, ΡΠ²ΡΠ·ΡΠ²Π°ΡΡΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠΎΠ±ΠΎΠΉ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΠΎ-Π²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΈΡΡΠ΅ΠΌ ΠΎΡΡΡΠ΅ΡΠ°. Π£ΠΊΠ°Π·Π°Π½Π½ΠΎΠ΅ ΡΠ°Π·Π»ΠΈΡΠΈΠ΅ ΠΈΡΡΠ΅Π·Π°Π΅Ρ Π»ΠΈΡΡ Π² ΡΠ»ΡΡΠ°Π΅ ΠΏΡΠΎΡΡΠ΅ΠΉΡΠ΅ΠΉ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ β ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΎΡΠ΅ΡΠ½ΠΎΠΉ ΡΠ°ΡΡΠΈΡΡ, Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΡΡΡΠ΅ΠΉ Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΡΠΌ ΡΠΈΠ»ΠΎΠ²ΡΠΌ ΠΏΠΎΠ»Π΅ΠΌ, ΠΈ ΠΏΠΎ ΡΡΠΎΠΉ ΠΏΡΠΈΡΠΈΠ½Π΅ ΠΎΠ±Π»Π°ΡΡΡ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΠΌΠΎΡΡΠΈ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ΅ΠΎΡΠΈΠΈ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΡΠ²ΠΎΠ΄ΠΈΡΡΡ ΠΊ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΠ΄Π½ΠΎΡΠ°ΡΡΠΈΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠ΅. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΈΠ· Π»ΠΎΠΊΠ°Π»ΡΠ½ΡΡ Π²ΡΠ΅ΠΌΠ΅Π½, Π² ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΠ΅ΡΠ΅ΡΠΎΠ΄ΠΈΡ Π³Π»ΠΎΠ±Π°Π»ΡΠ½ΠΎΠ΅ Π²ΡΠ΅ΠΌΡ ΠΏΡΠΈ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡΡ ΠΠΎΡΠ΅Π½ΡΠ°, Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΡΠΊΠΎΠ½ΡΡΡΡΠΈΡΠΎΠ²Π°ΡΡ Π³Π»ΠΎΠ±Π°Π»ΡΠ½ΠΎΠ΅ Π²ΡΠ΅ΠΌΡ Π² ΡΠΎΠΉ ΠΠ‘Π, Π² ΠΊΠΎΡΠΎΡΡΡ ΡΠΎΠ²Π΅ΡΡΠ°Π΅ΡΡΡ ΠΏΠ΅ΡΠ΅ΡΠΎΠ΄. ΠΠ°Π½ΠΎ ΡΡΡΠΎΠ³ΠΎΠ΅ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ Π½Π΅ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΡΡΠΈ ΠΠ‘Π Π² ΡΠ»ΡΡΠ°Π΅ ΠΊΠ²Π°Π½ΡΠΎΠ²ΠΎΠΉ ΡΠ°ΡΡΠΈΡΡ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π²ΡΠ²ΠΎΠ΄Ρ ΡΠ΅ΠΎΡΠΈΠΈ Π² ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ Π½Π΅ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΡΡΠΈ ΠΠ‘Π ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΎΠ²Π΅ΡΠΈΡΡ ΠΎΠΏΡΡΠ½ΡΠΌ ΠΏΡΡΠ΅ΠΌ Π² ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Ρ ΠΏΠΎ ΠΈΡΠΏΡΡΠΊΠ°Π½ΠΈΡ ΡΠΎΡΠΎΠ½ΠΎΠ² ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΡΠΌ ΠΏΡΡΠΊΠΎΠΌ Π²ΠΎ Π²Π½Π΅ΡΠ½Π΅ΠΌ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠΌ ΠΏΠΎΠ»Π΅. Π Π°ΡΡΠΌΠΎΡΡΠ΅Π½Π° ΡΠ²ΡΠ·Ρ ΠΌΠ΅ΠΆΠ΄Ρ Π³Π»ΠΎΠ±Π°Π»ΡΠ½ΡΠΌΠΈ Π²ΡΠ΅ΠΌΠ΅Π½Π°ΠΌΠΈ Π² Π΄Π²ΠΈΠΆΡΡΠΈΡΡΡ Π΄ΡΡΠ³ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΄ΡΡΠ³Π° ΠΠ‘Π Π² ΡΠ»ΡΡΠ°Π΅ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΎΡΠ΅ΡΠ½ΠΎΠΉ ΡΠ°ΡΡΠΈΡΡ. ΠΠ±ΡΡΠΆΠ΄Π°Π΅ΡΡΡ ΡΠ²Π»Π΅Π½ΠΈΠ΅ Π»ΠΎΠΊΠ°Π»ΡΠ½ΠΎΠΉ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ Π½Π΅ΠΎΠ΄Π½ΠΎΡΠΎΠ΄Π½ΠΎΡΡΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡΡΠ΅Π΅ ΠΏΡΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ°ΡΡΠΈΡΡ Π² ΡΠΈΠ»ΠΎΠ²ΠΎΠΌ ΠΏΠΎΠ»Π΅. ΠΡΠΌΠ΅ΡΠ°Π΅ΡΡΡ, ΡΡΠΎ Π² ΡΠ΅Π»ΡΡΠΈΠ²ΠΈΡΡΡΠΊΠΎΠΉ ΠΌΠ΅ΡΠ°Π½ΠΈΠΊΠ΅ ΡΠΈΠ»Π° ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠΈΡΠΈΠ½ΠΎΠΉ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΡΠ°ΡΡΠΈΡΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΠ‘Π, Π½ΠΎ ΠΈ ΠΏΡΠΈΡΠΈΠ½ΠΎΠΉ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠΎΠ΄Π° Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π²Π΄ΠΎΠ»Ρ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ°ΡΡΠΈΡΡ, β Π² ΡΡΠΎΠΌ ΡΠΎΡΡΠΎΠΈΡ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΈΠ½ΡΠΈΠΏΠ°, Π»Π΅ΠΆΠ°ΡΠ΅Π³ΠΎ Π² ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠ΅Π»ΡΡΠΈΠ²ΠΈΡΡΡΠΊΠΎΠΉ ΠΌΠ΅ΡΠ°Π½ΠΈΠΊΠΈ. Π‘ΠΎΠ³Π»Π°ΡΠ½ΠΎ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠΌ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌ, Π² ΡΠ°ΠΌΠΊΠ°Ρ ΠΎΠ΄Π½ΠΎΡΠ°ΡΡΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ΡΠΎΠ΄Π° Π»ΠΎΡΠ΅Π½ΡΠ΅Π²ΠΎ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ ΠΎΡΡΠ΅Π·ΠΊΠ° ΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΈΠ· ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΠΠΎΡΠ΅Π½ΡΠ° Π»ΠΈΡΡ Π² ΠΏΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ, ΡΡΠΎ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠΎΡΠ΅ΡΠ½Π°Ρ ΡΠ°ΡΡΠΈΡΠ° ΡΠΏΠΎΡΠΎΠ±Π½Π° Π΄Π²ΠΈΠ³Π°ΡΡΡΡ ΠΏΠΎ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΠΈ ΡΠΎ ΡΠ²Π΅ΡΡΡΠ²Π΅ΡΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ