4 research outputs found

    Convective Self-Sustained Motion in Mixtures of Chemically Active and Passive Particles

    No full text
    We develop a model to describe the behavior of a system of active and passive particles in solution that can undergo spontaneous self-organization and self-sustained motion. The active particles are uniformly coated with a catalyst that decomposes the reagent in the surrounding fluid. The resulting variations in the fluid density give rise to a convective flow around the active particles. The generated fluid flow, in turn, drives the self-organization of both the active and passive particles into clusters that undergo self-sustained propulsion along the bottom wall of a microchamber. This propulsion continues until the reagents in the solution are consumed. Depending on the number of active and passive particles and the structure of the self-organized cluster, these assemblies can translate, spin, or remain stationary. We also illustrate a scenario in which the geometry of the container is harnessed to direct the motion of a self-organized, self-propelled cluster. The findings provide guidelines for creating autonomously moving active particles, or chemical “motors” that can transport passive cargo in microfluidic devices

    Self-Propelled Nanomotors Autonomously Seek and Repair Cracks

    No full text
    Biological self-healing involves the autonomous localization of healing agents at the site of damage. Herein, we design and characterize a synthetic repair system where self-propelled nanomotors autonomously seek and localize at microscopic cracks and thus mimic salient features of biological wound healing. We demonstrate that these chemically powered catalytic nanomotors, composed of conductive Au/Pt spherical Janus particles, can autonomously detect and repair microscopic mechanical defects to restore the electrical conductivity of broken electronic pathways. This repair mechanism capitalizes on energetic wells and obstacles formed by surface cracks, which dramatically alter the nanomotor dynamics and trigger their localization at the defects. By developing models for self-propelled Janus nanomotors on a cracked surface, we simulate the systems’ dynamics over a range of particle speeds and densities to verify the process by which the nanomotors autonomously localize and accumulate at the cracks. We take advantage of this localization to demonstrate that the nanomotors can form conductive “patches” to repair scratched electrodes and restore the conductive pathway. Such a nanomotor-based repair system represents an important step toward the realization of biomimetic nanosystems that can autonomously sense and respond to environmental changes, a development that potentially can be expanded to a wide range of applications, from self-healing electronics to targeted drug delivery

    Self-Propelled Nanomotors Autonomously Seek and Repair Cracks

    No full text
    Biological self-healing involves the autonomous localization of healing agents at the site of damage. Herein, we design and characterize a synthetic repair system where self-propelled nanomotors autonomously seek and localize at microscopic cracks and thus mimic salient features of biological wound healing. We demonstrate that these chemically powered catalytic nanomotors, composed of conductive Au/Pt spherical Janus particles, can autonomously detect and repair microscopic mechanical defects to restore the electrical conductivity of broken electronic pathways. This repair mechanism capitalizes on energetic wells and obstacles formed by surface cracks, which dramatically alter the nanomotor dynamics and trigger their localization at the defects. By developing models for self-propelled Janus nanomotors on a cracked surface, we simulate the systems’ dynamics over a range of particle speeds and densities to verify the process by which the nanomotors autonomously localize and accumulate at the cracks. We take advantage of this localization to demonstrate that the nanomotors can form conductive “patches” to repair scratched electrodes and restore the conductive pathway. Such a nanomotor-based repair system represents an important step toward the realization of biomimetic nanosystems that can autonomously sense and respond to environmental changes, a development that potentially can be expanded to a wide range of applications, from self-healing electronics to targeted drug delivery

    Cellulose Microfibril Twist, Mechanics, and Implication for Cellulose Biosynthesis

    No full text
    All-atom molecular dynamics simulations with explicit water solvent were used to investigate the microstructure and conformational dynamics of cellulose Iβ microfibrils as a function of microfibril length and cross-sectional size and shape. Cellulose microfibrils quickly develop a right-handed twist, which then remains stable over the entire 10 ns simulation time. The helical angle is independent of microfibril length and inversely proportional to its cross-sectional area, in accord with the expectations of continuum theory for an intrinsic chiral twist that is opposed by torsional shear. These calculations provideto our knowledgethe first estimates of the shear modulus of a cellulose microfibril from MD simulations. The internal strains caused by this helical twist, propagated indefinitely along the microfibril axis, could be relaxed by periodic regions of amorphous structure along the axis of the cellulose microfibrils
    corecore