70 research outputs found
The genetic diversity of narcissus viruses related to turnip mosaic virus blur arbitrary boundaries used to discriminate potyvirus species
Narcissus plants (Narcissus tazetta var. chinensis) showing mosaic or striping leaves were collected from around Japan, and tested for virus infections using potyvirus-specific primers. Many were found to be infected with a macluravirus and mixtures of different potyviruses, one third of them narcissus yellow stripe virus (NYSV)-like viruses. Genomes of nine of the NYSV-like viruses were sequenced and, together with four already published, provided data for phylogenetic and pairwise identity analyses of their place in the turnip mosaic virus (TuMV) phylogenetic group. Using existing ICTV criteria for defining potyvirus species, the narcissus viruses in TuMV group were found to be from five species; the previously described NLSYV, and four new species we call narcissus virus 1 (NV-1) and narcissus yellow stripe-1 to -3 (NYSV-1, NYSV-2 and NYSV-3). However, as all are from a single host species, and natural recombinants with NV-1 and NYSV-3 'parents have been found in China and India, we also conclude that they could be considered to be members of a single mega-species, narcissus virus; the criteria for defining such a potyvirus species would then be that their polyprotein sequences have greater than 69% identical nucleotides and greater than 75% identical amino acids.This work was in part supported by the
JSPS KAKENHI Grant numbers 24405026 and
16K14862
Tobamoviruses have probably co-diverged with their eudicotyledonous hosts for at least 110 million years
A phylogeny has been calculated by maximum likelihood comparisons of the concatenated consensus protein sequences of 29 tobamoviruses shown to be non-recombinant. This phylogeny has statistically significant support throughout, including its basal branches. The viruses form eight lineages that are congruent with the taxonomy of the hosts from which each was first isolated and, with the exception of three of the twenty-nine species, all fall into three clusters that have either asterid or rosid or caryophyllid hosts (i.e. the major subdivisions of eudicotyledonous plants). A modified Mantel permutation test showed that the patristic distances of virus and host phylogenies are significantly correlated, especially when the three anomalously placed viruses are removed. When the internal branches of the virus phylogeny were collapsed the congruence decreased. The simplest explanation of this congruence of the virus and host phylogenies is that most tobamovirus lineages have co-diverged with their primary plant hosts for more than 110 million years, and only the brassica-infecting lineage originated from a major host switch from asterids to rosids. Their co-divergence seems to have been 'fuzzy' rather than 'strict', permitting viruses to switch hosts within major host clades. Our conclusions support those of a coalesence analysis of tobamovirus sequences, that used proxy node dating, but not a similar analysis of nucleotide sequences from dated samples, which concluded that the tobamoviruses originated only 100 thousand years ago
Nucleotide bias of DCL and AGO in plant anti-virus gene silencing
Plant Dicer-like (DCL) and Argonaute (AGO) are the key enzymes involved in anti-virus post-transcriptional gene silencing (AV-PTGS). Here we show that AV-PTGS exhibited nucleotide preference by calculating a relative AV-PTGS efficiency on processing viral RNA substrates. In comparison with genome sequences of dicot-infecting Turnip mosaic virus (TuMV) and monocot-infecting Cocksfoot streak virus (CSV), viral-derived small interfering RNAs (vsiRNAs) displayed positive correlations between AV-PTGS efficiency and G+C content (GC%). Further investigations on nucleotide contents revealed that the vsiRNA populations had G-biases. This finding was further supported by our analyses of previously reported vsiRNA populations in diverse plant-virus associations, and AGO associated Arabidopsis endogenous siRNA populations, indicating that plant AGOs operated with G-preference. We further propose a hypothesis that AV-PTGS imposes selection pressure(s) on the evolution of plant viruses. This hypothesis was supported when potyvirus genomes were analysed for evidence of GC elimination, suggesting that plant virus evolution to have low GC% genomes would have a unique function, which is to reduce the host AV-PTGS attack during infections
The phylogenetics of the global population of potato virus Y and its necrogenic recombinants
Potato virus Y (PVY) is a major pathogen of potatoes and other solanaceous crops worldwide. It is most closely related to potyviruses first or only found in the Americas, and it almost certainly originated in the Andes, where its hosts were domesticated. We have inferred the phylogeny of the published genomic sequences of 240 PVY isolates collected since 1938 worldwide, but not the Andes. All fall into five groupings, which mostly, but not exclusively, correspond with groupings already devised using biological and taxonomic data. Only 42 percent of the sequences are not recombinant, and all these fall into one or other of three phylogroups; the previously named C (common), O (ordinary), and N (necrotic) groups. There are also two other distinct groups of isolates all of which are recombinant; the R-1 isolates have N (5' terminal minor) and O (major) parents, and the R-2 isolates have R-1 (major) and N (3' terminal minor) parents. Many isolates also have additional minor intra- and inter-group recombinant genomic regions. The complex interrelationships between the genomes were resolved by progressively identifying and removing recombinants using partitioned sequences of synonymous codons. Least squared dating and BEAST analyses of two datasets of gene sequences from non-recombinant heterochronously-sampled isolates (seventy-three non-recombinant major ORFs and 166 partial ORFs) found the 95% confidence intervals of the TMRCA estimates overlap around 1,000 CE (Common Era; AD). We attempted to identify the most accurate datings by comparing the estimated phylogenetic dates with historical events in the worldwide adoption of potato and other PVY hosts as crops, but found that more evidence from gene sequences of non-potato isolates, especially from South America, was required
Αξιοβίωτη Ολοκληρωμένη Ανάπτυξη. Από την Θεωρία στην Πράξη: Η περίπτωση των αστέγων της Αθήνας
Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Περιβάλλον και Ανάπτυξη
ICTV Virus Taxonomy Profile: Potyviridae 2022
The family Potyviridae includes plant viruses with single-stranded, positive-sense RNA genomes of 8–11 kb and flexuous filamentous particles 650–950 nm long and 11–20 nm wide. Genera in the family are distinguished by the host range, genomic features and phylogeny of the member viruses. Most genomes are monopartite, but those of members of the genus Bymovirus are bipartite. Some members cause serious disease epidemics in cultivated plants. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Potyviridae, which is available at ictv.global/report/potyviridae
ICTV Virus Taxonomy Profile : Potyviridae 2022
The family Potyviridae includes plant viruses with single-stranded, positive-sense RNA genomes of 8-11 kb and flexuous filamentous particles 650-950 nm long and 11-20 nm wide. Genera in the family are distinguished by the host range, genomic features and phylogeny of the member viruses. Most genomes are monopartite, but those of members of the genus Bymovirus are bipartite. Some members cause serious disease epidemics in cultivated plants. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Potyviridae, which is available at ictv.global/report/potyviridae.Peer reviewe
Erratum: ICTV Virus taxonomy profile: Potyviridae
No abstract availabl
The Timescale of Emergence and Spread of Turnip Mosaic Potyvirus
Plant viruses have important global impacts on crops, and identifying their centre and date of emergence is important for planning control measures. Turnip mosaic virus (TuMV) is a member of the genus Potyvirus in the family Potyviridae and is a major worldwide pathogen of brassica crops. For two decades, we have collected TuMV isolates, mostly from brassicas, in Turkey and neighbouring countries. This region is thought to be the centre of emergence of this virus. We determined the genomic sequences of 179 of these isolates and used these to estimate the timescale of the spread of this virus. Our Bayesian coalescent analyses used synonymous sites from a total of 417 novel and published whole-genome sequences. We conclude that TuMV probably originated from a virus of wild orchids in Germany and, while adapting to wild and domestic brassicas, spread via Southern Europe to Asia Minor no more than 700 years ago. The population of basal-B group TuMVs in Asia Minor is older than all other populations of this virus, including a newly discovered population in Iran. The timescale of the spread of TuMV correlates well with the establishment of agriculture in these countries.This work was in part funded by Saga University and supported by
JSPS KAKENHI Grant numbers 18405022, 24405026 and 16K14862 and Grant-in-Aid for JSPS Research Fellow
Grant number 16J04390
Turnip mosaic potyvirus probably first spread to Eurasian brassica crops from wild orchids about 1000 years ago
Turnip mosaic potyvirus (TuMV) is probably the most widespread and damaging virus that infects cultivated brassicas worldwide. Previous work has indicated that the virus originated in western Eurasia, with all of its closest relatives being viruses of monocotyledonous plants. Here we report that we have identified a sister lineage of TuMV-like potyviruses (TuMV-OM) from European orchids. The isolates of TuMV-OM form a monophyletic sister lineage to the brassica-infecting TuMVs (TuMV-BIs), and are nested within a clade of monocotyledon-infecting viruses. Extensive host-range tests showed that all of the TuMV-OMs are biologically similar to, but distinct from, TuMV-BIs and do not readily infect brassicas. We conclude that it is more likely that TuMV evolved from a TuMV-OM-like ancestor than the reverse. We did Bayesian coalescent analyses using a combination of novel and published sequence data from four TuMV genes [helper component-proteinase protein (HC-Pro), protein 3(P3), nuclear inclusion b protein (NIb), and coat protein (CP)]. Three genes (HC-Pro, P3, and NIb), but not the CP gene, gave results indicating that the TuMV-BI viruses diverged from TuMV-OMs around 1000 years ago. Only 150 years later, the four lineages of the present global population of TuMV-BIs diverged from one another. These dates are congruent with historical records of the spread of agriculture in Western Europe. From about 1200 years ago, there was a warming of the climate, and agriculture and the human population of the region greatly increased. Farming replaced woodlands, fostering viruses and aphid vectors that could invade the crops, which included several brassica cultivars and weeds. Later, starting 500 years ago, inter-continental maritime trade probably spread the TuMV-BIs to the remainder of the world
- …