6,042 research outputs found
Quantum Hole Digging in Magnetic Molecular Clusters
Below 360 mK, Fe8 magnetic molecular clusters are in the pure quantum
relaxation regime. We showed recently that the predicted ``square-root time''
relaxation is obeyed, allowing us to develop a new method for watching the
evolution of the distribution of molecular spin states in the sample. We
measured the distribution P(H) of molecules which are in resonance at the
applied field H. Tunnelling initially causes rapid transitions of molecules,
thereby ``digging a hole'' in P(H). For small initial magnetisation values, the
hole width shows an intrinsic broadening which may be due to nuclear spins. We
present here hole digging measurements in the thermal activated regime which
may allow to study the effect of spin-phonon coupling.Comment: 3 pages, 2 figures, conference proceedings of LT22 (Helsinki,
Finland, August 4-11, 1999
Answer to the comment of Chudnovsky: On the square-root time relaxation in molecular nanomagnets
Answer to the comment of E. Chudnovsky concerning the following papers:
(1) N.V. Prokof'ev, P.C.E. Stamp, Phys. Rev. Lett.80, 5794 (1998).
(2) W. Wernsdorfer, T. Ohm, C. Sangregorio, R. Sessoli, D. Mailly, C.
Paulsen, Phys. Rev. Lett. 82, 3903 (1999).Comment: 1 page
Relaxation in the 3D ordered CoTAC spin chain by quantum nucleation of 0D domain walls
We have shown that resonant quantum tunnelling of the magnetisation (QTM),
until now observed only in 0D cluster systems (SMMs), occurs in the molecular
Ising spin chain, CoTAC ([(CH_3)_3NH]CoCl_3 - 2H_2O) which orders as a canted
3D-antiferromagnet at T_C=4.15 K. This effect was observed around a resonant
like field value of 1025 Oe. We present here measurements of the relaxation of
the magnetisation as a function of time, from the zero field cooled (ZFC)
antiferromagnet state and from the saturated ferromagnet state. We show that,
at the resonant field, the relaxation from the saturated state occurs in a
complicated process, whereas, surprisingly, in the case of the ZFC state, the
relaxation is exponential.Comment: 4 pages, 5 figures, LT25 proceeding
H.E.S.S. observations of the Large Magellanic Cloud
The Large Magellanic Cloud (LMC) is a satellite galaxy of the Milky Way at a
distance of approximately 48 kpc. Despite its distance it harbours several
interesting targets for TeV gamma-ray observations. The composite supernova
remnant N 157B/PSR J05367-6910 was discovered by H.E.S.S. being an emitter of
very high energy (VHE) gamma-rays. It is the most distant pulsar wind nebula
ever detected in VHE gamma-rays. Another very exciting target is SN 1987A, the
remnant of the most recent supernova explosion that occurred in the
neighbourhood of the Milky Way. Models for Cosmic Ray acceleration in this
remnant predict gamma-ray emission at a level detectable by H.E.S.S. but this
has not been detected so far. Fermi/LAT discovered diffuse high energy (HE)
gamma-ray emission from the general direction of the massive star forming
region 30 Doradus but no clear evidence for emission from either N 157B or SN
1987A has been published. The part of the LMC containing these objects has been
observed regularly with the H.E.S.S. telescopes since 2003. With deep
observations carried out in 2010 a very good exposure of this part of the sky
has been obtained. The current status of the H.E.S.S. LMC observations is
reported along with new results on N 157B and SN 1987A.Comment: 4 pages, 3 figures, proceedings of the 32nd Internatioal Cosmic Ray
Conference, Beijing 201
Proton Spin Relaxation Induced by Quantum Tunneling in Fe8 Molecular Nanomagnet
The spin-lattice relaxation rate and NMR spectra of H in
single crystal molecular magnets of Fe8 have been measured down to 15 mK. The
relaxation rate shows a strong temperature dependence down to 400
mK. The relaxation is well explained in terms of the thermal transition of the
iron state between the discreet energy levels of the total spin S=10. The
relaxation time becomes temperature independent below 300 mK and is
longer than 100 s. In this temperature region stepwise recovery of the
H-NMR signal after saturation was observed depending on the return field of
the sweep field. This phenomenon is attributed to resonant quantum tunneling at
the fields where levels cross and is discussed in terms of the Landau-Zener
transition.Comment: 13 pages, 5 figure
Near threshold eta meson production in the d+d->alpha+eta reaction
The d+d->alpha+eta reaction has been investigated near threshold using the
ANKE facility at COSY-Juelich. Both total and differential cross sections have
been measured at two excess energies, Q=2.6 MeV and 7.7 MeV, with a
subthreshold measurement being undertaken at Q=-2.6 MeV to study the physical
background. While consistent with isotropy at the lower energy, the angular
distribution reveals a pronounced anisotropy at the higher one, indicating the
presence of higher partial waves. Options for the decomposition into partial
amplitudes and their consequences for determination of the s-wave eta-alpha
scattering length are discussed.Comment: 8pp, fig.3 added, normalisation in eq.4.1 correcte
The ATLAS beam pick-up based timing system
The ATLAS BPTX stations are comprised of electrostatic button pick-up
detectors, located 175 m away along the beam pipe on both sides of ATLAS. The
pick-ups are installed as a part of the LHC beam instrumentation and used by
ATLAS for timing purposes.
The usage of the BPTX signals in ATLAS is twofold: they are used both in the
trigger system and for LHC beam monitoring. The BPTX signals are discriminated
with a constant-fraction discriminator to provide a Level-1 trigger when a
bunch passes through ATLAS. Furthermore, the BPTX detectors are used by a
stand-alone monitoring system for the LHC bunches and timing signals. The BPTX
monitoring system measures the phase between collisions and clock with a
precision better than 100 ps in order to guarantee a stable phase relationship
for optimal signal sampling in the subdetector front-end electronics. In
addition to monitoring this phase, the properties of the individual bunches are
measured and the structure of the beams is determined.
On September 10, 2008, the first LHC beams reached the ATLAS experiment.
During this period with beam, the ATLAS BPTX system was used extensively to
time in the read-out of the sub-detectors. In this paper, we present the
performance of the BPTX system and its measurements of the first LHC beams.Comment: 3 pages. Submitted to NIM A for the proceedings of TIPP09 (Tsukuba,
Japan
- …