35,466 research outputs found
Influence of external disturbances and compressibility on free turbulent mixing
It is shown that disturbances in external flow can significantly affect, by as much as an order of magnitude, the turbulent mixing rate in free shear layers and that the length scale of the external flow disturbances is as important as the amplitude. The difference between the effect of wide-band and narrow-band disturbances is stressed. The model for pressure fluctuation term in the kinetic energy equation is included in a two-equation model. The reduced spreading rate in high Mach number, high Reynolds number, adiabatic, free turbulent shear layers is predicted
Synchronization transition of heterogeneously coupled oscillators on scale-free networks
We investigate the synchronization transition of the modified Kuramoto model
where the oscillators form a scale-free network with degree exponent .
An oscillator of degree is coupled to its neighboring oscillators with
asymmetric and degree-dependent coupling in the form of \couplingcoeff
k_i^{\eta-1}. By invoking the mean-field approach, we determine the
synchronization transition point , which is zero (finite) when (). We find eight different synchronization
transition behaviors depending on the values of and , and
derive the critical exponents associated with the order parameter and the
finite-size scaling in each case. The synchronization transition is also
studied from the perspective of cluster formation of synchronized vertices. The
cluster-size distribution and the largest cluster size as a function of the
system size are derived for each case using the generating function technique.
Our analytic results are confirmed by numerical simulations.Comment: 11 pages, 3 figures and two table
Azimuthal distributions of radial momentum and velocity in relativistic heavy ion collisions
Azimuthal distributions of radial (transverse) momentum, mean radial
momentum, and mean radial velocity of final state particles are suggested for
relativistic heavy ion collisions. Using transport model AMPT with string
melting, these distributions for Au + Au collisions at 200 GeV are presented
and studied. It is demonstrated that the distribution of total radial momentum
is more sensitive to the anisotropic expansion, as the anisotropies of final
state particles and their associated transverse momentums are both counted in
the measure. The mean radial velocity distribution is compared with the radial
{\deg}ow velocity. The thermal motion contributes an isotropic constant to mean
radial velocity
Ultrafast spectroscopy of propagating coherent acoustic phonons in GaN/InGaN heterostructures
We show that large amplitude, coherent acoustic phonon wavepackets can be
generated and detected in InGaN/GaN epilayers and heterostructures
in femtosecond pump-probe differential reflectivity experiments. The amplitude
of the coherent phonon increases with increasing Indium fraction and unlike
other coherent phonon oscillations, both \textit{amplitude} and \textit{period}
are strong functions of the laser probe energy. The amplitude of the
oscillation is substantially and almost instantaneously reduced when the
wavepacket reaches a GaN-sapphire interface below the surface indicating that
the phonon wavepackets are useful for imaging below the surface. A theoretical
model is proposed which fits the experiments well and helps to deduce the
strength of the phonon wavepackets. Our model shows that localized coherent
phonon wavepackets are generated by the femtosecond pump laser in the epilayer
near the surface. The wavepackets then propagate through a GaN layer changing
the local index of refraction, primarily through the Franz-Keldysh effect, and
as a result, modulate the reflectivity of the probe beam. Our model correctly
predicts the experimental dependence on probe-wavelength as well as epilayer
thickness.Comment: 11 pages, 14 figure
Higher Derivative CP(N) Model and Quantization of the Induced Chern-Simons Term
We consider higher derivative CP(N) model in 2+1 dimensions with the
Wess-Zumino-Witten term and the topological current density squared term. We
quantize the theory by using the auxiliary gauge field formulation in the path
integral method and prove that the extended model remains renormalizable in the
large N limit. We find that the Maxwell-Chern-Simons theory is dynamically
induced in the large N effective action at a nontrivial UV fixed point. The
quantization of the Chern-Simons term is also discussed.Comment: 8 pages, no figure, a minor change in abstract, added Comments on the
quantization of the Chern-Simons term whose coefficient is also corrected,
and some references are added. Some typos are corrected. Added a new
paragraph checking the equivalence between (3) and (5), and a related
referenc
- âŠ