5 research outputs found

    Layered Cost-Map-Based Traffic Management for Multiple Automated Mobile Robots via a Data Distribution Service

    Full text link
    This letter proposes traffic management for multiple automated mobile robots (AMRs) based on a layered cost map. Multiple AMRs communicate via a data distribution service (DDS), which is shared by topics in the same DDS domain. The cost of each layer is manipulated by topics. The traffic management server in the domain sends or receives topics to each of AMRs. Using the layered cost map, the new concept of prohibition filter, lane filter, fleet layer, and region filter are proposed and implemented. The prohibition filter can help a user set an area that would prohibit an AMR from trespassing. The lane filter can help set one-way directions based on an angle image. The fleet layer can help AMRs share their locations via the traffic management server. The region filter requests for or receives an exclusive area, which can be occupied by only one AMR, from the traffic management server. All the layers are experimentally validated with real-world AMRs. Each area can be configured with user-defined images or text-based parameter files.Comment: 8 pages, 13 figure

    Layered-Cost-Map-Based Traffic Management for Multiple AMRs via a DDS

    No full text
    A traffic management system can be used to control multiple automated mobile robots (AMRs) effectively. This paper proposes traffic management for multiple AMRs based on a layered cost map in ROS 2 for multiple purposes. Using the layered cost map, the new concepts of a prohibition filter, lane filter, fleet layer, and region filter are proposed and implemented. The prohibition filter can help a user set an area that would prohibit an AMR from trespassing. The lane filter can help set one-way directions based on an angle image. The fleet layer can help AMRs share their locations via the traffic management server. The region filter requests for or receives an exclusive area, which can be occupied by only one AMR from the traffic management server. Multiple AMRs communicate via a data distribution service (DDS), which is shared by topics in the same DDS domain. The traffic management server in the domain sends or receives topics to each of the AMRs. The experiments of AMRs under the proposed traffic management show the effectiveness of our approach

    Decreased Glucose Utilization Contributes to Memory Impairment in Patients with Glufosinate Ammonium Intoxication

    No full text
    The symptoms of glufosinate ammonium (GLA) intoxication include gastrointestinal and neurologic symptoms, respiratory failure, and cardiovascular instability. Among these, neurologic symptoms including loss of consciousness, memory impairment, and seizure are characteristic of GLA poisoning. However, the mechanism of brain injury by GLA poisoning is still poorly understood. We investigated nine patients who had performed an F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) scan because of memory impairment caused by GLA ingestion. FDG-PET images of patients with GLA intoxication were compared with 24 age- and sex-matched healthy controls to evaluate whether the patients had abnormal patterns of glucose metabolism in the brain. Decreased glucose metabolism was observed in the inferior frontal and temporal lobes of these patients with GLA intoxication when compared with 24 age- and sex-matched healthy controls. Three patients performed follow-up FDG-PET scans. However, it was shown that the results of the follow-up FDG-PET scans were determined to be inconclusive. Our study showed that memory impairment induced by GLA intoxication was associated with glucose hypometabolism in the inferior frontal and temporal lobes in the brain

    Understanding Particulate Matter Retention and Wash-Off during Rainfall in Relation to Leaf Traits of Urban Forest Tree Species

    No full text
    Dynamic particulate matter (PM) behavior on leaves depends on rainfall events, leaf structural and physical properties, and individual tree crowns in urban forests. To address this dependency, we compared the observed relationships between PM wash-off ability and leaf traits on inner and outer crown-positioned leaves during rainfall events. Data showed significant differences in the PM wash-off ability between inner and outer crown-positioned leaves relative to rainfall events due to leaf macro- and micro-structure and geometric properties among tree species. Our results showed that PM wash-off effects on leaf surfaces were negatively associated with trichome density and size of leaf micro-scale during rainfall events. Specifically, Quercus acutissima with dense trichomes and micro-level surface roughness with narrow grooves on leaf surfaces showed lower total PM wash-off in both inner (−38%) and outer (105%) crowns during rainfall. Thus, their rough leaves in the inner crown might newly capture and/or retain more PM than smooth leaves even under rainfall conditions. More importantly, Euonymus japonicus, with a thin film-like wax coverage without trichome, led to higher total PM wash-off in both inner (368%) and outer (629%) crowns during rainfall. Furthermore, we studied the changes in PM wash-off during rainfall events by comparing particle size fractions, revealing a very significant association with macro-scale, micro-scale, and geometric features

    The ribonuclease activity of SAMHD1 is required for HIV-1 restriction

    No full text
    The HIV-1 restriction factor SAM domain– and HD domain–containing protein 1 (SAMHD1)1,2 is proposed to inhibit HIV-1 replication by depleting the intracellular dNTP pool3–5. However, phosphorylation of SAMHD1 regulates its ability to restrict HIV-1 without decreasing cellular dNTP levels6–8, which is not consistent with a role for SAMHD1 dNTPase activity in HIV-1 restriction. Here, we show that SAMHD1 possesses RNase activity and that the RNase but not the dNTPase function is essential for HIV-1 restriction. By enzymatically characterizing Aicardi-Goutières syndrome (AGS)-associated SAMHD1 mutations and mutations in the allosteric dGTP-binding site of SAMHD1 for defects in RNase or dNTPase activity, we identify SAMHD1 point mutants that cause loss of one or both functions. The RNase-positive and dNTPase-negative SAMHD1D137N mutant is able to restrict HIV-1 infection, whereas the RNase-negative and dNTPase-positive SAMHD1Q548A mutant is defective for HIV-1 restriction. SAMHD1 associates with HIV-1 RNA and degrades it during the early phases of cell infection. SAMHD1 silencing in macrophages and CD4+ T cells from healthy donors increases HIV-1 RNA stability, rendering the cells permissive for HIV-1 infection. Furthermore, phosphorylation of SAMHD1 at T592 negatively regulates its RNase activity in cells and impedes HIV-1 restriction. Our results reveal that the RNase activity of SAMHD1 is responsible for preventing HIV-1 infection by directly degrading the HIV-1 RNA.11341421sciescopu
    corecore