7 research outputs found
Recommended from our members
Representations of finite element tensors via automated code generation
We examine aspects of the computation of finite element matrices and vectors which are made possible by automated code generation. Given a variational form in a syntax which resembles standard mathematical notation, the low-level computer code for building finite element tensors, typically matrices, vectors and scalars, can be generated automatically via a form compiler. In particular, the generation of code for computing finite element matrices using a quadrature approach is addressed. For quadrature representations, a number of optimisation strategies which are made possible by automated code generation are presented. The relative performance of two different automatically generated representations of finite element matrices is examined, with a particular emphasis on complicated variational forms. It is shown that approaches which perform best for simple forms are not tractable for more complicated problems in terms of run time performance, the time required to generate the code or the size of the generated code. The approach and optimisations elaborated here are effective for a range of variational forms
FFC: the FEniCS Form Compiler
One of the key features of FEniCS is automated code generation for the general and efficient 7018 solution of finite element variational problems. This automated code generation relies on a form 7019 compiler for offline or just-in-time compilation of code for individual forms. Two different form 7020 compilers are available as part of FEniCS
FFC: the FEniCS Form Compiler
One of the key features of FEniCS is automated code generation for the general and efficient 7018 solution of finite element variational problems. This automated code generation relies on a form 7019 compiler for offline or just-in-time compilation of code for individual forms. Two different form 7020 compilers are available as part of FEniCS