290 research outputs found

    Ecology of mountain sheep: effects of mining and precipitation

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 1999We examined effects of mining on mountain sheep (Ovis canadensis nelsoni) in California. Size of home range, forage quality, and diet did not differ between populations in mined and nonmined areas. During summer, we observed the greatest disparity in time spent feeding and diet quality. Because of their dependence on a spring adjacent to the mine, sheep may have spent more time vigilant, and less time feeding. Reducing mining during summer may benefit sheep. We also compared ecology of two female mountain sheep populations from different areas (xeric vs. mesic) in the Mojave Desert. The more xeric Panamint Range was typified by more bare ground, less shrubs, less grass, and larger home ranges than at Old Dad Peak. Females from Old Dad foraged on grasses, whereas those from the Panamints consumed shrubs. We concluded that sheep from the Panamints required larger home ranges because of lower-quantity and quality of forage

    A next-generation optical sensor for IceCube-Gen2

    Get PDF

    Sensitivity studies for the IceCube-Gen2 radio array

    Get PDF

    The Surface Array planned for IceCube-Gen2

    Get PDF
    IceCube-Gen2, the extension of the IceCube Neutrino Observatory, will feature three main components: an optical array in the deep ice, a large-scale radio array in the shallow ice and firn, and a surface detector above the optical array. Thus, IceCube-Gen2 will not only be an excellent detector for PeV neutrinos, but also constitutes a unique setup for the measurement of cosmic-ray air showers, where the electromagnetic component and low-energy muons are measured at the surface and high-energy muons are measured in the ice. As for ongoing enhancement of IceCube’s current surface array, IceTop, we foresee a combination of elevated scintillation and radio detectors for the Gen2 surface array, aiming at high measurement accuracy for air showers. The science goals are manifold: The in-situ measurement of the cosmic-ray flux and mass composition, as well as more thorough tests of hadronic interaction models, will improve the understanding of muons and atmospheric neutrinos detected in the ice, in particular, regarding prompt muons. Moreover, the surface array provides a cosmic-ray veto for the in-ice detector and contributes to the calibration of the optical and radio arrays. Last but not least, the surface array will make major contributions to cosmic-ray science in the energy range of the transition from Galactic to extragalactic sources. The increased sensitivities for photons and for cosmic-ray anisotropies at multi-PeV energies provide a chance to solve the puzzle of the origin of the most energetic Galactic cosmic rays and will serve IceCube’s multimessenger mission

    Searching for neutrino transients below 1 TeV with IceCube

    Get PDF

    Searching for time-dependent high-energy neutrino emission from X-ray binaries with IceCube

    Get PDF

    A time-independent search for neutrinos from galaxy clusters with IceCube

    Get PDF

    The Acoustic Module for the IceCube Upgrade

    Get PDF

    A Combined Fit of the Diffuse Neutrino Spectrum using IceCube Muon Tracks and Cascades

    Get PDF

    Posteriori analysis on IceCube double pulse tau neutrino candidates

    Get PDF
    The IceCube Neutrino Observatory at the South Pole detects Cherenkov light emitted by charged secondary particles created by primary neutrino interactions. Double pulse waveforms can arise from charged current interactions of astrophysical tau neutrinos with nucleons in the ice and the subsequent decay of tau leptons. The previous 8-year tau double pulse analysis found three tau neutrino candidate events. Among them, the most promising one observed in 2014 is located very near the dust layer in the middle of the detector. A posterior analysis on this event will be presented in this paper, using a new ice model treatment with continuously varying nuisance parameters to do the targeted Monte Carlo re-simulation for tau and other background neutrino ensembles. The impact of different ice models on the expected signal and background statistics will also be discussed
    corecore