4,035 research outputs found

    Using ACIS on the Chandra X-ray Observatory as a particle radiation monitor

    Full text link
    The Advanced CCD Imaging Spectrometer (ACIS) is one of two focal-plane instruments on the Chandra X-ray Observatory. During initial radiation-belt passes, the exposed ACIS suffered significant radiation damage from trapped soft protons scattering off the x-ray telescope's mirrors. The primary effect of this damage was to increase the charge-transfer inefficiency (CTI) of the ACIS 8 front-illuminated CCDs. Subsequently, the Chandra team implemented procedures to remove the ACIS from the telescope's focus during high-radiation events: planned protection during radiation-belt transits; autonomous protection triggered by an on-board radiation monitor; and manual intervention based upon assessment of space-weather conditions. However, as Chandra's multilayer insulation ages, elevated temperatures have reduced the effectiveness of the on-board radiation monitor for autonomous protection. Here we investigate using the ACIS CCDs themselves as a radiation monitor. We explore the 10-year database to evaluate the CCDs' response to particle radiation and to compare this response with other radiation data and environment models.Comment: 10 pages, 5 figures. To appear in Proc. SPIE vol. 773

    Using ACIS on the Chandra X-ray Observatory as a particle radiation monitor II

    Full text link
    The Advanced CCD Imaging Spectrometer is an instrument on the Chandra X-ray Observatory. CCDs are vulnerable to radiation damage, particularly by soft protons in the radiation belts and solar storms. The Chandra team has implemented procedures to protect ACIS during high-radiation events including autonomous protection triggered by an on-board radiation monitor. Elevated temperatures have reduced the effectiveness of the on-board monitor. The ACIS team has developed an algorithm which uses data from the CCDs themselves to detect periods of high radiation and a flight software patch to apply this algorithm is currently active on-board the instrument. In this paper, we explore the ACIS response to particle radiation through comparisons to a number of external measures of the radiation environment. We hope to better understand the efficiency of the algorithm as a function of the flux and spectrum of the particles and the time-profile of the radiation event.Comment: 10 pages, 5 figures, to be published in Proc. SPIE 8443, "Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray

    A Keck High Resolution Spectroscopic Study of the Orion Nebula Proplyds

    Get PDF
    We present the results of spectroscopy of four bright proplyds in the Orion Nebula obtained at a velocity resolution of 6 km/s. After careful isolation of the proplyd spectra from the confusing nebular radiation, the emission line profiles are compared with those predicted by realistic dynamic/photoionization models of the objects. The spectral line widths show a clear correlation with ionization potential, which is consistent with the free expansion of a transonic, ionization-stratified, photoevaporating flow. Fitting models of such a flow simultaneously to our spectra and HST emission line imaging provides direct measurements of the proplyd size, ionized density and outflow velocity. These measurements confirm that the ionization front in the proplyds is approximately D-critical and provide the most accurate and robust estimate to date of the proplyd mass loss rate. Values of 0.7E-6 to 1.5E-6 Msun/year are found for our spectroscopic sample, although extrapolating our results to a larger sample of proplyds implies that 0.4E-6 Msun/year is more typical of the proplyds as a whole. In view of the reported limits on the masses of the circumstellar disks within the proplyds, the length of time that they can have been exposed to ionizing radiation should not greatly exceed 10,000 years - a factor of 30 less than the mean age of the proplyd stars. We review the various mechanisms that have been proposed to explain this situation, and conclude that none can plausibly work unless the disk masses are revised upwards by a substantial amount.Comment: 23 pages, 8 figures, uses emulateapj.sty, accepted for publication in The Astronomical Journal (scheduled November 1999

    Measurements with the Chandra X-Ray Observatory's flight contamination monitor

    Get PDF
    NASA's Chandra X-ray Observatory includes a Flight Contamination Monitor (FCM), a system of 16 radioactive calibration sources mounted to the inside of the Observatory's forward contamination cover. The purpose of the FCM is to verify the ground-to-orbit transfer of the Chandra flux scale, through comparison of data acquired during the ground calibration with those obtained in orbit, immediately prior to opening the Observatory's sun-shade door. Here we report results of these measurements, which place limits on the change in mirror--detector system response and, hence, on any accumulation of molecular contamination on the mirrors' iridium-coated surfaces.Comment: 7pages,8figures,for SPIE 4012, paper 7

    Aerosol information content analysis of multi-angle high spectral resolution measurements and its benefit for high accuracy greenhouse gas retrievals

    Get PDF
    New generations of space-borne spectrometers for the retrieval of atmospheric abundances of greenhouse gases require unprecedented accuracies as atmospheric variability of long-lived gases is very low. These instruments, such as GOSAT and OCO-2, typically use a high spectral resolution oxygen channel (O_2 A-band) in addition to CO_2 and CH_4 channels to discriminate changes in the photon path-length distribution from actual trace gas amount changes. Inaccurate knowledge of the photon path-length distribution, determined by scatterers in the atmosphere, is the prime source of systematic biases in the retrieval. In this paper, we investigate the combined aerosol and greenhouse gas retrieval using multiple satellite viewing angles simultaneously. We find that this method, hitherto only applied in multi-angle imagery such as from POLDER or MISR, greatly enhances the ability to retrieve aerosol properties by 2–3 degrees of freedom. We find that the improved capability to retrieve aerosol parameters significantly reduces interference errors introduced into retrieved CO_2 and CH_4 total column averages. Instead of focussing solely on improvements in spectral and spatial resolution, signal-to-noise ratios or sampling frequency, multiple angles reduce uncertainty in space based greenhouse gas retrievals more effectively and provide a new potential for dedicated aerosols retrievals

    Classical versus quantum dynamics of the atomic Josephson junction

    Full text link
    We compare the classical (mean-field) dynamics with the quantum dynamics of atomic Bose-Einstein condensates in double-well potentials. The quantum dynamics are computed using a simple scheme based upon the Raman-Nath equations. Two different methods for exciting a non-equilbrium state are considered: an asymmetry between the wells which is suddenly removed, and a periodic time oscillating asymmetry. The first method generates wave packets that lead to collapses and revivals of the expectation values of the macroscopic variables, and we calculate the time scale for these revivals. The second method permits the excitation of a single energy eigenstate of the many-particle system, including Schroedinger cat states. We also discuss a band theory interpretation of the energy level structure of an asymmetric double-well, thereby identifying analogies to Bloch oscillations and Bragg resonances. Both the Bloch and Bragg dynamics are purely quantum and are not contained in the mean-field treatment.Comment: 31 pages, 14 figure

    Dynamical diffraction in sinusoidal potentials: uniform approximations for Mathieu functions

    Get PDF
    Eigenvalues and eigenfunctions of Mathieu's equation are found in the short wavelength limit using a uniform approximation (method of comparison with a `known' equation having the same classical turning point structure) applied in Fourier space. The uniform approximation used here relies upon the fact that by passing into Fourier space the Mathieu equation can be mapped onto the simpler problem of a double well potential. The resulting eigenfunctions (Bloch waves), which are uniformly valid for all angles, are then used to describe the semiclassical scattering of waves by potentials varying sinusoidally in one direction. In such situations, for instance in the diffraction of atoms by gratings made of light, it is common to make the Raman-Nath approximation which ignores the motion of the atoms inside the grating. When using the eigenfunctions no such approximation is made so that the dynamical diffraction regime (long interaction time) can be explored.Comment: 36 pages, 16 figures. This updated version includes important references to existing work on uniform approximations, such as Olver's method applied to the modified Mathieu equation. It is emphasised that the paper presented here pertains to Fourier space uniform approximation

    Mathematical Formalism for Designing Wide-Field X-Ray Telescopes: Mirror Nodal Positions and Detector Tilts

    Get PDF
    We provide a mathematical formalism for optimizing the mirror nodal positions along the optical axis and the tilt of a commonly employed detector configuration at the focus of a x-ray telescope consisting of nested mirror shells with known mirror surface prescriptions. We adopt the spatial resolution averaged over the field-of-view as the figure of merit M. A more complete description appears in our paper in these proceedings

    COMPASS: a 2.6m telescope for CMBR polarization studies

    Get PDF
    COMPASS (COsmic Microwave Polarization at Small Scale) is an experiment devoted to measuring the polarization of the CMBR. Its design and characteristics are presented

    Concerning the Development of the Wide-Field Optics for WFXT Including Methods of Optimizing X-Ray Optical Prescriptions for Wide-Field Applications

    Get PDF
    We present a progress report on the various endeavors we are undertaking at MSFC in support of the Wide Field X-Ray Telescope development. In particular we discuss assembly and alignment techniques, in-situ polishing corrections, and the results of our efforts to optimize mirror prescriptions including polynomial coefficients, relative shell displacements, detector placements and tilts. This optimization does not require a blind search through the multi-dimensional parameter space. Under the assumption that the parameters are small enough so that second order expansions are valid, we show that the performance at the detector can be expressed as a quadratic function with numerical coefficients derived from a ray trace through the underlying Wolter I optic. The optimal values for the parameters are found by solving the linear system of equations creating by setting derivatives of this function with respect to each parameter to zero
    corecore