4,035 research outputs found
Using ACIS on the Chandra X-ray Observatory as a particle radiation monitor
The Advanced CCD Imaging Spectrometer (ACIS) is one of two focal-plane
instruments on the Chandra X-ray Observatory. During initial radiation-belt
passes, the exposed ACIS suffered significant radiation damage from trapped
soft protons scattering off the x-ray telescope's mirrors. The primary effect
of this damage was to increase the charge-transfer inefficiency (CTI) of the
ACIS 8 front-illuminated CCDs. Subsequently, the Chandra team implemented
procedures to remove the ACIS from the telescope's focus during high-radiation
events: planned protection during radiation-belt transits; autonomous
protection triggered by an on-board radiation monitor; and manual intervention
based upon assessment of space-weather conditions. However, as Chandra's
multilayer insulation ages, elevated temperatures have reduced the
effectiveness of the on-board radiation monitor for autonomous protection. Here
we investigate using the ACIS CCDs themselves as a radiation monitor. We
explore the 10-year database to evaluate the CCDs' response to particle
radiation and to compare this response with other radiation data and
environment models.Comment: 10 pages, 5 figures. To appear in Proc. SPIE vol. 773
Using ACIS on the Chandra X-ray Observatory as a particle radiation monitor II
The Advanced CCD Imaging Spectrometer is an instrument on the Chandra X-ray
Observatory. CCDs are vulnerable to radiation damage, particularly by soft
protons in the radiation belts and solar storms. The Chandra team has
implemented procedures to protect ACIS during high-radiation events including
autonomous protection triggered by an on-board radiation monitor. Elevated
temperatures have reduced the effectiveness of the on-board monitor. The ACIS
team has developed an algorithm which uses data from the CCDs themselves to
detect periods of high radiation and a flight software patch to apply this
algorithm is currently active on-board the instrument. In this paper, we
explore the ACIS response to particle radiation through comparisons to a number
of external measures of the radiation environment. We hope to better understand
the efficiency of the algorithm as a function of the flux and spectrum of the
particles and the time-profile of the radiation event.Comment: 10 pages, 5 figures, to be published in Proc. SPIE 8443, "Space
Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray
A Keck High Resolution Spectroscopic Study of the Orion Nebula Proplyds
We present the results of spectroscopy of four bright proplyds in the Orion
Nebula obtained at a velocity resolution of 6 km/s. After careful isolation of
the proplyd spectra from the confusing nebular radiation, the emission line
profiles are compared with those predicted by realistic dynamic/photoionization
models of the objects. The spectral line widths show a clear correlation with
ionization potential, which is consistent with the free expansion of a
transonic, ionization-stratified, photoevaporating flow. Fitting models of such
a flow simultaneously to our spectra and HST emission line imaging provides
direct measurements of the proplyd size, ionized density and outflow velocity.
These measurements confirm that the ionization front in the proplyds is
approximately D-critical and provide the most accurate and robust estimate to
date of the proplyd mass loss rate. Values of 0.7E-6 to 1.5E-6 Msun/year are
found for our spectroscopic sample, although extrapolating our results to a
larger sample of proplyds implies that 0.4E-6 Msun/year is more typical of the
proplyds as a whole. In view of the reported limits on the masses of the
circumstellar disks within the proplyds, the length of time that they can have
been exposed to ionizing radiation should not greatly exceed 10,000 years - a
factor of 30 less than the mean age of the proplyd stars. We review the various
mechanisms that have been proposed to explain this situation, and conclude that
none can plausibly work unless the disk masses are revised upwards by a
substantial amount.Comment: 23 pages, 8 figures, uses emulateapj.sty, accepted for publication in
The Astronomical Journal (scheduled November 1999
Measurements with the Chandra X-Ray Observatory's flight contamination monitor
NASA's Chandra X-ray Observatory includes a Flight Contamination Monitor
(FCM), a system of 16 radioactive calibration sources mounted to the inside of
the Observatory's forward contamination cover. The purpose of the FCM is to
verify the ground-to-orbit transfer of the Chandra flux scale, through
comparison of data acquired during the ground calibration with those obtained
in orbit, immediately prior to opening the Observatory's sun-shade door. Here
we report results of these measurements, which place limits on the change in
mirror--detector system response and, hence, on any accumulation of molecular
contamination on the mirrors' iridium-coated surfaces.Comment: 7pages,8figures,for SPIE 4012, paper 7
Aerosol information content analysis of multi-angle high spectral resolution measurements and its benefit for high accuracy greenhouse gas retrievals
New generations of space-borne spectrometers for the retrieval of atmospheric abundances of greenhouse gases require unprecedented accuracies as atmospheric variability of long-lived gases is very low. These instruments, such as GOSAT and OCO-2, typically use a high spectral resolution oxygen channel (O_2 A-band) in addition to CO_2 and CH_4 channels to discriminate changes in the photon path-length distribution from actual trace gas amount changes. Inaccurate knowledge of the photon path-length distribution, determined by scatterers in the atmosphere, is the prime source of systematic biases in the retrieval. In this paper, we investigate the combined aerosol and greenhouse gas retrieval using multiple satellite viewing angles simultaneously. We find that this method, hitherto only applied in multi-angle imagery such as from POLDER or MISR, greatly enhances the ability to retrieve aerosol properties by 2–3 degrees of freedom. We find that the improved capability to retrieve aerosol parameters significantly reduces interference errors introduced into retrieved CO_2 and CH_4 total column averages. Instead of focussing solely on improvements in spectral and spatial resolution, signal-to-noise ratios or sampling frequency, multiple angles reduce uncertainty in space based greenhouse gas retrievals more effectively and provide a new potential for dedicated aerosols retrievals
Classical versus quantum dynamics of the atomic Josephson junction
We compare the classical (mean-field) dynamics with the quantum dynamics of
atomic Bose-Einstein condensates in double-well potentials. The quantum
dynamics are computed using a simple scheme based upon the Raman-Nath
equations. Two different methods for exciting a non-equilbrium state are
considered: an asymmetry between the wells which is suddenly removed, and a
periodic time oscillating asymmetry. The first method generates wave packets
that lead to collapses and revivals of the expectation values of the
macroscopic variables, and we calculate the time scale for these revivals. The
second method permits the excitation of a single energy eigenstate of the
many-particle system, including Schroedinger cat states. We also discuss a band
theory interpretation of the energy level structure of an asymmetric
double-well, thereby identifying analogies to Bloch oscillations and Bragg
resonances. Both the Bloch and Bragg dynamics are purely quantum and are not
contained in the mean-field treatment.Comment: 31 pages, 14 figure
Dynamical diffraction in sinusoidal potentials: uniform approximations for Mathieu functions
Eigenvalues and eigenfunctions of Mathieu's equation are found in the short
wavelength limit using a uniform approximation (method of comparison with a
`known' equation having the same classical turning point structure) applied in
Fourier space. The uniform approximation used here relies upon the fact that by
passing into Fourier space the Mathieu equation can be mapped onto the simpler
problem of a double well potential. The resulting eigenfunctions (Bloch waves),
which are uniformly valid for all angles, are then used to describe the
semiclassical scattering of waves by potentials varying sinusoidally in one
direction. In such situations, for instance in the diffraction of atoms by
gratings made of light, it is common to make the Raman-Nath approximation which
ignores the motion of the atoms inside the grating. When using the
eigenfunctions no such approximation is made so that the dynamical diffraction
regime (long interaction time) can be explored.Comment: 36 pages, 16 figures. This updated version includes important
references to existing work on uniform approximations, such as Olver's method
applied to the modified Mathieu equation. It is emphasised that the paper
presented here pertains to Fourier space uniform approximation
Mathematical Formalism for Designing Wide-Field X-Ray Telescopes: Mirror Nodal Positions and Detector Tilts
We provide a mathematical formalism for optimizing the mirror nodal positions along the optical axis and the tilt of a commonly employed detector configuration at the focus of a x-ray telescope consisting of nested mirror shells with known mirror surface prescriptions. We adopt the spatial resolution averaged over the field-of-view as the figure of merit M. A more complete description appears in our paper in these proceedings
COMPASS: a 2.6m telescope for CMBR polarization studies
COMPASS (COsmic Microwave Polarization at Small Scale) is an experiment devoted to measuring the polarization of the CMBR. Its design and characteristics are presented
Concerning the Development of the Wide-Field Optics for WFXT Including Methods of Optimizing X-Ray Optical Prescriptions for Wide-Field Applications
We present a progress report on the various endeavors we are undertaking at MSFC in support of the Wide Field X-Ray Telescope development. In particular we discuss assembly and alignment techniques, in-situ polishing corrections, and the results of our efforts to optimize mirror prescriptions including polynomial coefficients, relative shell displacements, detector placements and tilts. This optimization does not require a blind search through the multi-dimensional parameter space. Under the assumption that the parameters are small enough so that second order expansions are valid, we show that the performance at the detector can be expressed as a quadratic function with numerical coefficients derived from a ray trace through the underlying Wolter I optic. The optimal values for the parameters are found by solving the linear system of equations creating by setting derivatives of this function with respect to each parameter to zero
- …